
ROB301 Final Project Report

Ryan Chen
1003912992

Yuqian Zhou
1003234289

August 17, 2021

1 Introduction

This project aims to control a Turtlebot 3 Waffle Pi robot to simulate a mail delivery route in the lab
environment. The robot loops along a track and delivers to 12 different offices, which are represented by four
different colour patches (blue, orange, yellow and green) along the track. The robot use a camera mounted
at the front to recognized these colour patches. A topological map of all offices is also given to the robot
before hand as shown in Figure 1. The robot is required to perform a ’delivering motion’ at desired offices.

Figure 1: Topological Map of the Delivery Route. The robot starts before green block 0.

2 Description of the Robot Platform

The robot platform utilized in this project is the TurtleBot 3 Waffle Pi, which includes a Raspberry Pi 3B
as the single-board computer, an OpenCR 1.0 board as the embedded microcontroller and a Raspberry Pi
camera as the main input sensor. The Raspberry Pi is responsible for collecting input sensor data from the
camera and passing the corresponding output commands received from the remote PC to the OpenCR board.
The OpenCR board then outputs specific motor driving signals to the Dynamixel actuators to operate the
wheels of the robot.

1

3 Overview of Solution Strategy

The project goal can be separated into four sub-tasks as listed below:

1. path following along a track

2. recognizing colour patches, or ’offices’

3. localizing based on the recognized offices and the map

4. navigating and delivering to the desired offices

The hierarchy of these tasks can be seen in Figure 2. The line following and colour recognition are two
fundamental algorithms. The former ensure the robot travels along its desired loop and the latter processes
sensor data for localization. The high level idea is switching between line following and colour recognition.
If a colour block is detected, the robot start the estimation. Otherwise, the robot would remain going along
the line.

Line Following
P-control

colour Recognition

Localization
Bayesian Filter

Navigation
and Delivery

Figure 2: Hierarchy of Sub-tasks

4 Technical Details on the Design Methodology

4.1 Line Following using P-control

For line following, the sensor input from the camera is first interpreted as a 2D array of pixels, with
each array element corresponding to the pixel location storing the hex colour code of the pixel. For each
column of the colour matrix, the average colour code values are taken and condensed into a 1D array of
horizontal location. The index of the maximum value in this 1D array is then taken as the horizontal
location of the tape. Knowing that the width of the images captured are 640 pixels, the desired location of
the tape should be maintained at exactly the center of the robot, which corresponds to the index 320. The
P-controller constantly compares the current location with the desired location and calculates the margin
of error between the two. To compensate for the error, the controller will output an additional correction
element to the motors that is proportional to the error by a factor kp as shown in Figure 3. A kp value of
0.002 and motor speed of 0.03 m/s were utilized to ensure the stability of the robot during straight sections
and the ability to perform sharpe turns during the curved sections.

2

P kpe(t) Robot

Noise

Twist.angular.z

Measurements line idx

Position e line idx
−

line idxm

Figure 3: P-control algorithm

4.2 Colour Recognition Algorithm

The colour recognition algorithm is simple but less robust due to the sensor’s perceptiveness to ambient
light in the environment. The team assigned thresholds for each colour and calibrated with actual RGB
reading from the sensor in the lab. See Table 1 for thresholds used in final demonstration. To achieve best
accuracy, the algorithm should filters out blue, orange, yellow and green in sequence and left with nothing,
which then switch back to line following algorithm. Among the four colours, the difference between yellow
and green is the least significant and can potentially be mixed up under various ambient lighting conditions.

R G B

Blue [0,60] [50,170] [155,255]

Orange [215,255] [15,165] [0,5]

Yellow [180,255] [140,255] [0,5]

Green [0,180] [140,255] [0,5]

Table 1: Threshold for distinguishing among four colours. Max range for each colour is [0,255]

4.3 Localization using Bayesian Filter

The team applied standard Bayesian filter with a recursive two-step algorithm: state prediction and state
update. Table 2 show how the algorithm is performed at step k+1, given previous estimate p(xk|z0:k), input
uk and measurement zk+1. Sate model p(xk+1|xk, uk) and measurement model p(zk+1|xk+1) or p(zk|xk) are
from Table 3 and Table 4 in Appendix 8.1, respectively. After calculating the numerator of state update, the
result is normalized to [0,1]. Because environmental factors have a significant effect on colour recognition
algorithm, the team implemented a double-checking method to ensure the measurement p(zk+1|xk+1) is free
of disturbance in the environment. When the robot thinks it arrives at an office, it will move forward for a
short distance and then measure again. Only the second measurement is considered because sensor readings
at the edge of the office is much noisier than those at the center.

State Prediction p(xk+1|z0:k) =
∑
xk∈Λ p(xk+1|xk, uk)p(xk|z0:k)

State Update p(xk+1|z0:k+1) = p(zk+1|xk+1)p(xk+1|z0:k)∑
ξk+1∈Λ p(zk+1|ξk+1)p(ξk+1|z0:k)

Table 2: Algorithm of Bayesian filter at step k + 1

3

4.4 Navigation and Delivery

The delivery process of the operation is quite straight forward. Upon arriving at the desired office, the
robot needs to stop, turn 90◦ to its left, turn back towards its original orientation, and then proceed. This is
performed simply by giving the robot an angular velocity in the desired direction and introducing an delay
to put all other processes on hold. Note that the robot will only perform this delivery motion when the
localization model has converged and the robot has at least 50% confidence of its location.

5 Demonstration Performance

In terms of performance, the robot was able to successfully complete the described operation with high
accuracy and precision. The localization algorithm tends to convergence very quickly, which usually outputs
about 90% confidence for the correct location after arriving at the third office. The robot can perfectly
execute the required maneuvers and navigate through the entire map. However, an ongoing connection issue
was present throughout the development stage, which has significantly affected the P-controller due to the
communication delay. This was compensated by reducing the driving speed of robot and utilizing a lower
gain value as listed in Section 4.1.

6 List of Potential Improvements

6.1 Decrease Uncertainties in Sensor Measurement

As mentioned in the Section 4.2, the reliability of the colour recognition algorithm is largely affected by
ambient light. The threshold listed in Table 1 is not a robust solution. Reconfiguring camera settings and
calibrating these threshold values are required before operations every time the robot is restarted. This
problem could be improved by mounting the camera at the bottom of the robot or providing a source of
light to cancel out the ambient light.

6.2 Improve on Bayesian Filter Models

Currently, the algorithm is using the default models given in Table 3 and Table 4 in Appendix 8.1. The
model usually converges at the third or fourth office but it sometimes takes longer time to be localized.
Given that the robot moves slowly, it takes at lease 2 minutes to finish a trail. The model could converge
faster if a better set of models is chosen for Bayesian filter.

7 Conclusion

In conclusion, the team was able to successfully design and implement the control algorithms required for
a mail delivery robot. The theoretical knowledge of PID control and Bayesian localization were thoroughly
demonstrated in a practical robotics application as well. The initial problem was further divided into
four subsections to develop individually: path following, colour recognition, Bayesian localization and mail
delivery. The path following block was designed using a P-controller to track the course based on the desired
and actual location of the line captured through the camera. The colour recognition section was calibrated
using RGB value ranges to accurately process the recorded sensor data. The Bayesian localization block
utilizes a recursive two=step algorithm of state predictions and updates to quickly converge to the correct
location of the robot. The 90◦ mail delivery maneuver was achieved through directly controlling the angular
velocity of the robot and introducing a delay to pause all other running processes. Overall, the robot
completed the described operation with high accuracy and precision.

4

8 Appendix

8.1 State and Measurement Model in Bayesian Filter

p(xk+1|xk, uk) uk = −1 uk = 0 uk = 1

xk[i− 1] 0.85 0.05 0.05

xk[i] 0.10 0.90 0.10

xk[i + 1] 0.05 0.05 0.85

Table 3: State model used in state prediction process of the Bayesian filtering

p(zk|xk) Blue Green Yellow Orange

Blue 0.60 0.20 0.05 0.05

Green 0.20 0.60 0.05 0.05

Yellow 0.05 0.05 0.65 0.20

Orange 0.05 0.05 0.15 0.60

Nothing 0.10 0.10 0.10 0.10

Table 4: Measurement model used in state prediction process of the Bayesian filtering

8.2 Full Algorithm of the Project

#!/ usr / b in /env python

import rospy
import math
import time
from geometry msgs . msg import Twist
from std msgs . msg import St r ing
import matp lo t l i b . pyplot as p l t
import numpy as np
import re
import sys , s e l e c t , os

my pi = 3.14159265

i f os . name == ’ nt ’ :
import msvcrt

else :
import tty , te rmios

def getKey () :
i f os . name == ’ nt ’ :

5

return msvcrt . getch ()

t ty . setraw (sys . s td in . f i l e n o ())
r l i s t , , = s e l e c t . s e l e c t ([sys . s td in] , [] , [] , 0 . 1)
i f r l i s t :

key = sys . s td in . read (1)
else :

key = ’ ’

te rmios . t c s e t a t t r (sys . s td in , te rmios .TCSADRAIN, s e t t i n g s)
return key

class BayesLoc :
def i n i t (s e l f) :

#Sub s c r i b e r s
s e l f . c o l ou r sub = rospy . Subsc r ibe r (’ mean img rgb ’ , Str ing , s e l f . measurement cal lback)
s e l f . l i n e i d x s u b = rospy . Subsc r ibe r (’ l i n e i d x ’ , Str ing , s e l f . l i n e c a l l b a c k)
s e l f . cmd pub= rospy . Pub l i sher (’ cmd vel ’ , Twist , q u e u e s i z e =1)
#Color mapping and l i n e changing
s e l f . color map = color map
s e l f . measured rgb = np . array ([0 , 0 , 0]) # updated wi th the measurement ca l l back
s e l f . l i n e i d x = 0 # updated wi th the l i n e c a l l b a c k wi th the index o f the de t e c t e d b l a c k l i n e .
#Pub l i s h e r s
s e l f . s ta te pub = rospy . Pub l i she r (’ s t a t e ’ , Str ing , q u e u e s i z e = 1)
s e l f . co lo r pub = rospy . Pub l i she r (’ c o l o r ’ , Str ing , q u e u e s i z e = 1)
#pr io r
s e l f . p r e d i c t = [0 . 0] ∗ 1 2
#po s t e r i o r
s e l f . cur r ent = [1 . 0 / 1 2]∗1 2
s e l f . i n i t i a l = [1 . 0 / 1 2]∗1 2
s e l f . u = 1
Pred ic ted Address
s e l f . add = 0 #Pred ic ted Address
s e l f . conf = 0 .0 #Estimation con f idence
s e l f . update = np . z e r o s ((1 2 , 1 2)) #Sta t e P r o b a b i l i t y
s e l f . cnt = 0 #Counter o f o f f i c e
s e l f . goa l = [4 , 6 , 8] #Targeted o f f i c e s
P Contro l
s e l f . kp = 0.002
s e l f . r = rospy . Rate (20)
s e l f . d e s i r e d = 320
s e l f . x = 0 .03
s e l f . tw i s t = Twist ()

def measurement cal lback (s e l f , msg) :
rgb = msg . data . r e p l a c e (’ r : ’ , ’ ’) . r e p l a c e (’b : ’ , ’ ’) . r e p l a c e (’ g : ’ , ’ ’) . r e p l a c e (’ ’ , ’ ’)
r , g , b = rgb . s p l i t (’ , ’)
r , g , b=(f loat (r) , f loat (g) , f loat (b))
s e l f . measured rgb = np . array ([r , g , b])

def l i n e c a l l b a c k (s e l f , data) :
index = int (data . data)
s e l f . l i n e i d x = index

6

def c o n t r o l (s e l f) :
c o r r e c t i o n = 0
e r r o r = s e l f . d e s i r e d − s e l f . l i n e i d x
c o r r e c t i o n = s e l f . kp∗ e r r o r
#pr in t (’ Error = ’ , error , ’ Corr = ’ , c o r r e c t i on)
s e l f . tw i s t . l i n e a r . x = s e l f . x
s e l f . tw i s t . angular . z = c o r r e c t i o n
s e l f . cmd pub . pub l i sh (s e l f . tw i s t)
#s e l f . r . s l e e p ()
pass

def forward (s e l f) :
s e l f . tw i s t . l i n e a r . x = s e l f . x
s e l f . tw i s t . angular . z = 0
s e l f . cmd pub . pub l i sh (s e l f . tw i s t)
s e l f . r . s l e e p ()
pass

def turn (s e l f) :
s e l f . tw i s t . l i n e a r . x = 0
s e l f . tw i s t . angular . z = 0 .2
s e l f . cmd pub . pub l i sh (s e l f . tw i s t)
time = my pi /4/0 .1
rospy . s l e e p (time)
s e l f . tw i s t . l i n e a r . x = 0
s e l f . tw i s t . angular . z = 0
s e l f . cmd pub . pub l i sh (s e l f . tw i s t)
rospy . s l e e p (1)
s e l f . tw i s t . l i n e a r . x = 0
s e l f . tw i s t . angular . z = −0.2
s e l f . cmd pub . pub l i sh (s e l f . tw i s t)
time = my pi /4/0 .1
rospy . s l e e p (time)
pass

def s t a t e p r e d i c t (s e l f , u) :
s e l f . p r e d i c t =[0 .0]∗12
for i in range (len (s e l f . cur rent)) :

i f u == 1 :
s e l f . p r e d i c t [(i −1)%12] += s e l f . cu r r ent [i]∗0 . 0 5
s e l f . p r e d i c t [i %12] += s e l f . cur rent [i]∗0 . 1 0
s e l f . p r e d i c t [(i +1)%12]+= s e l f . cu r r ent [i]∗0 . 8 5

e l i f u == 0 :
s e l f . p r e d i c t [(i −1)%12] += s e l f . cu r r ent [i]∗0 . 0 5
s e l f . p r e d i c t [i %12] += s e l f . cur rent [i]∗0 . 9 0
s e l f . p r e d i c t [(i +1)%12]+= s e l f . cu r r ent [i]∗0 . 0 5

e l i f u == −1:
s e l f . p r e d i c t [(i −1)%12] += s e l f . cu r r ent [i]∗0 . 8 5
s e l f . p r e d i c t [i %12] += s e l f . cur rent [i]∗0 . 1 0
s e l f . p r e d i c t [(i +1)%12]+= s e l f . cu r r ent [i]∗0 . 0 5

else :
print (’ERR: i n v a l i d input ’)
#ra i s e err

7

def normal ize (s e l f , l) :
norm = 0
for i in range (len (l)) :

norm += l [i]
for i in range (len (l)) :

l [i] = l [i] / norm
return l

def s ta t e update (s e l f , c o l) :
Nothing = 0 , Blue = 1 , Green = 2 , Yel low = 3 , Orange = 4
c o l o r c o d e = ’ Nothing ’
Check the o f f i c e map in l a b
b add = [4 , 8 , 9]
g add = [0 , 2 , 5]
y add = [3 , 7 , 1 1]
o add = [1 , 6 , 1 0]

i f c o l == 1 : # Blue
c o l o r c o d e = ’ Blue ’
for i in b add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 6 0
for i in g add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 2 0
for i in y add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 0 5
for i in o add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 0 5

e l i f c o l == 2 : # Green
c o l o r c o d e = ’ Green ’
for i in b add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 2 0
for i in g add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 6 0
for i in y add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 0 5
for i in o add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 0 5

e l i f c o l == 3 : # Yellow
c o l o r c o d e = ’ Yellow ’
for i in b add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 0 5
for i in g add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 0 5
for i in y add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 6 5
for i in o add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 2 0

e l i f c o l == 4 : #Orange
c o l o r c o d e = ’ Orange ’
for i in b add :

8

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 0 5
for i in g add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 0 5
for i in y add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 1 5
for i in o add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 6 0

e l i f c o l == 0 : #Nothing
for i in b add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 1 0
for i in g add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 1 0
for i in y add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 1 0
for i in o add :

s e l f . cu r r ent [i] = s e l f . p r e d i c t [i]∗0 . 1 0
else :

print (’ERR: i n v a l i d c o l o r code ’ , c o l)

pr in t (co l o r code)
s e l f . cur r ent = s e l f . normal ize (s e l f . cur rent) #Normal izat ion
#a l l g u e s s = []
b e s t g u e s s = max(s e l f . cur r ent)
b e s t l o c a t i o n = s e l f . cu r r ent . index (b e s t g u e s s)
return b e s t l o c a t i o n , b e s t g u e s s

def g e t c o l o r (s e l f , rgb) :
c o l o r = 0
Blue
i f rgb [0] < 60 and rgb [1] < 170 and rgb [1] > 50 and rgb [2] > 155 :

c o l o r = 1
Orange
e l i f rgb [0] > 215 and rgb [1] < 165 and rgb [1] > 15 and rgb [2] < 5 :

c o l o r = 4
Yellow
e l i f rgb [0] > 180 and rgb [1] > 140 and rgb [2] < 5 :

c o l o r = 3
Green
e l i f rgb [0] < 180 and rgb [1] > 140 and rgb [2] < 5 :

c o l o r = 2
return c o l o r

def run (s e l f) :
s e l f . c o l o r = s e l f . g e t c o l o r (s e l f . measured rgb)
#pr in t (s e l f . c o l o r)
#re turn
i f s e l f . c o l o r == 0 : #Nothing

s e l f . c o n t r o l ()
else :

s e l f . forward ()
rospy . s l e e p (0 . 5)
s e l f . c o l o r = s e l f . g e t c o l o r (s e l f . measured rgb)
i f s e l f . c o l o r == 0 :

9

s e l f . c o n t r o l ()
else :

s e l f . s t a t e p r e d i c t (s e l f . u)
s e l f . add , s e l f . conf = s e l f . s t a t e update (s e l f . c o l o r)
s e l f . update [s e l f . cnt] = np . array (s e l f . cu r r ent)
print (s e l f . add , s e l f . co lo r , s e l f . conf)
s e l f . cnt += 1
i f s e l f . add in s e l f . goa l and s e l f . conf > 0 . 5 :

s e l f . forward ()
rospy . s l e e p (4 . 5)
s e l f . turn ()
s e l f . forward ()
rospy . s l e e p (4 . 5)

else :
s e l f . forward ()
rospy . s l e e p (9)

i f name ==” main ” :
i f os . name != ’ nt ’ :

s e t t i n g s = termios . t c g e t a t t r (sys . s td in)

color map = [0 , 1 , 2 , 3] ### A sample map with 4 co l ou r s in a row

rospy . i n i t n o d e (’ b a y e s l o c ’)
BL=BayesLoc ()
rospy . s l e e p (0 . 5)
rate main = rospy . Rate (20)

I n i t i a l i z e your PID c o n t r o l l e r here (to merge wi th the b a y e s l o c node)
t0 = rospy . Time . now () . t o s e c ()
t = rospy . Time . now () . t o s e c () − t0
try :

while t <400:
t = rospy . Time . now () . t o s e c () − t0
key = getKey ()
i f (key == ’ \x03 ’) : #1.22 : bayes ian . curPos >= 1.6 or

rospy . l o g i n f o (’ F in i shed ! ’)
break

BL. run ()
rospy . l o g i n f o (”Measurement : {}” . format (BL. measured rgb))
#rospy . l o g i n f o (” Line index : {}”. format (BL. l i n e i d x))
rate main . s l e e p ()

excep t Except ion as e :
pr i n t (”comm f a i l e d :{}” . format (e))

f ina l ly :

Stop the robo t when code ends
cmd publ i sher = rospy . Pub l i sher (’ cmd vel ’ , Twist , q u e u e s i z e =1)
tw i s t = Twist ()
tw i s t . l i n e a r . x = 0 . 0 ; tw i s t . l i n e a r . y = 0 . 0 ; tw i s t . l i n e a r . z = 0 .0
tw i s t . angular . x = 0 . 0 ; tw i s t . angular . y = 0 . 0 ; tw i s t . angular . z = 0 .0

10

cmd publ i sher . pub l i sh (tw i s t)
Plot
x = np . array ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1])
y = BL. update
p l t . subplot (6 , 1 , 1)
p l t . bar (x ,BL. i n i t i a l)
p l t . subplot (6 , 1 , 2)
p l t . bar (x , y [0])
p l t . subplot (6 , 1 , 3)
p l t . bar (x , y [1])
p l t . subplot (6 , 1 , 4)
p l t . bar (x , y [2])
p l t . subplot (6 , 1 , 5)
p l t . bar (x , y [3])
p l t . subplot (6 , 1 , 6)
p l t . bar (x , y [4])
p l t . show ()

p l t . subplot (6 , 1 , 1)
p l t . bar (x , y [5])
p l t . subplot (6 , 1 , 2)
p l t . bar (x , y [6])
p l t . subplot (6 , 1 , 3)
p l t . bar (x , y [7])
p l t . subplot (6 , 1 , 4)
p l t . bar (x , y [8])
p l t . subplot (6 , 1 , 5)
p l t . bar (x , y [9])
p l t . subplot (6 , 1 , 6)
p l t . bar (x , y [1 0])
p l t . show ()

p l t . bar (x , y [1 1])
p l t . show ()

11

