
UNIVERSITY OF TORONTO

INSTITUTE FOR AEROSPACE STUDIES

4925 Dufferin Street, Toronto, Ontario, Canada, M3H 5T6

The Traffic Cone Deployment Machine

prepared by

Team 02 – Monday

Ryan Chen (1003912992)

Hongyu Chen (1004560441)

Yutong Zhu (1004020631)

prepared for

Prof. M.R. Emami

A technical report submitted for

AER201 – Engineering Design

TA: Mollie Bianchi

April 11, 2019

1

Division of Engineering Science, University of Toronto

AER201 – Engineering Design, Final Report

Prof. M. R. Emami

TA: Mollie Bianchi

The Traffic Cone Deployment Machine

Mr. Krabs

Team 2

Hongyu Chen, Yutong Zhu, Ryan Chen

2

Acknowledgement

This has been a challenging but precious experience. We, as a team, have taken efforts in this

project. However, it would not have been such a success without the support and help of many

people around us. We would like to extend our sincere thanks to the following:

We are highly indebted to Professor M.R. Emami for providing us the precious opportunity to

have such valuable experience of making our first engineering robot, for his grateful guidance,

extraordinary knowledge and generosity for providing us with accessories.

We would also like to express our thanks to our lovely teaching assistant, Mollie Bianchi, who

has guided us through this entire journey with her enormous help and encouragement, as well as

some necessary information regarding the project.

We would also like to thank our machine lab supervisor Colin Harry, who has constantly

provided us guidance and supervision as well as the assistance every time we faced

electromechanical challenges.

Our thanks and appreciations also go to our colleagues and peers in developing the project and

people who have willingly helped us out with their abilities.

3

Abstract

This document is the project final report, which describes the design and construction of the

robot Mr. Krabs, an autonomous traffic cone dispensing machine for the competition of AER201

Engineering Design Course 2019.

The robot Mr. Krabs has a dimension of 44cm * 34cm *29 cm, and an overall weight of 4.5kg. It

is capable of moving along a straight or curved line and deploying mini traffic cones upon

detection of obstacles on the road. During the operation, the robot is first positioned behind a

Start Line. It begins operation when the start button on the keypad is pressed by the user. Once

the operation is completed and the robot returns, the user can retrieve operation data using the

keypad and a LCD. The total cost of the robot is $227.48 CAD. This robot features its omni

directional driving system with 4 Mecanum wheels, which allow it to move in any directions.

Our robot has achieved great performance during the 7-day final testing. It presents history data

of past four operations accurately and move along the designated lane via the two lone following

sensors. However, during the competition, the middle detection sensor malfunctioned so holes

were not detected. The risks and concerns can be addressed and lead to future improvement such

as installing another row of sensors for risk management, etc.

4

Table of Contents

Acknowledgement ... 2

Abstract .. 3

Table of Contents ... 4

Symbols, Abbreviations and Definitions ... 6

1. Introduction .. 7

2. Perspective ... 8

2.1 Theory and History .. 8

2.2 Background Survey .. 8

3. Decision Making Standards .. 11

3.1 Requirements .. 11

3.2 Constraints .. 11

3.3 Values .. 12

4. Budget ... 13

5. Division of Problem .. 16

6. Electromechanical .. 17

6.1 Basic Structure .. 17

6.2 Driving System... 19

6.3 Cone Dispensing Mechanism .. 23

6.4 Sensing System .. 30

6.5 Indicating System .. 33

7. Circuits .. 35

7.1 Driving System Direction and Speed Control .. 35

7.2 Detection and Line Following Sensors .. 38

7.3 Directional Control of Indicator Flag Rotation .. 40

7.4 Power Management.. 41

8. Microcontroller .. 43

8.1 User Interface .. 43

8.2 Real-Time Clock ... 44

8.3 IR Sensor Signal Reading and Processing .. 45

8.4 Encoder Signal Reading and Processing .. 45

5

8.5 Permanent Memory of Operation Data (Read and Write) ... 45

8.6 Servo Motor Control for Cone Deployment Gates ... 46

8.7 Mecanum Wheels (DC Motors) Speed and Overall Direction Control ... 47

8.8 Main Function ... 47

8.9 Global Variables ... 48

8.10 PC Interface .. 49

8.11 Line Following .. 50

8.12 Indicator Flag DC Motor Control ... 51

8.13 Dispense Routine Function ... 51

8.14 Future Improvement for Microcontroller .. 51

8.15 Simulation Results and Takeaways .. 51

9. Integration .. 54

9.1 Phase 1: Physical Integration/ Functional Calibration .. 54

9.2 Phase 2: Accuracy Calibration ... 54

9.3 Future Improvements and Suggestions .. 57

10. Time Management .. 58

11. Conclusion .. 61

12. Final Design... 62

12.1 Description of Overall Machine ... 62

12.2 Standard Operating Procedure ... 63

13. Appendix ... 65

Appendix A: References .. 65

Appendix B: Complete Code for Microcontroller ... 66

Appendix C: Additional Diagrams and Datasheets ... 167

Appendix D: Sections of Proposal ... 188

6

Symbols, Abbreviations and Definitions

AER201: University of Toronto Engineering Science Course – 2019 Winter: Engineering Design

PIC: Peripheral Interface Controller

IR Sensor: Infrared Sensor

PWM: Pulse Width Modulation

The Board: Customized Development Board Produced by AER201

LCD: Liquid Crystal Display

I/O: input and output

Transition Variables: Computer variables that will be computed and then used as inputs in the

robot main operating routine

Record Variables: Computer variables that will be sent to permanent log

CAD: Computer-Aided Design

LDS: Left Detection Sensor

RDS: Right Detection Sensor

MDS: Middle Detection Sensor

7

1. Introduction

A traffic cone has a triangular face that are usually placed on the highways, road or footpath to

temporarily redirect traffic. They are often used in creating separation or merging lane during the

construction or accidents isolation.

A city engineering contractor needs to develop a machine that can automatically deploy these

traffic cones given the following instructions such that:

The designed machine should be initially positioned behind the starting line in standby mode. The

machine begins operation when the start button on the keypad is pressed. Once the operation is

initiated, the machine will travel along the lane until the detection of a hole or crack, in which it

follows the requirements such that:

 1. If a crack is detected, the machine will deploy two cones on top of the crack, such that they

do not contact each other.

 2. If a hole is detected, the machine will deploy one cone on top of the hole.

Mr. Krabs is a mini traffic cone dispensing robot designed and constructed by Team 2 in 2019.

This document is the project final report, which describes the design and construction of the

robot Mr. Krabs, an autonomous traffic cone dispensing machine for the competition of AER201

Engineering Design Course 2019. This report outlines the construction details and integration

progress, in response to the prototype described in the project proposal.

8

2. Perspective

2.1 Theory and History

Cone

Traffic cones were invented by Charles D. Scanlon from Los Angeles. The patent for his

invention was granted in the year 1943 [1]. The orange traffic cones were first used in the UK

and quickly spread across the pond in 1958. The first use of traffic cones in England coincide

with the opening of the M6motorway, since then they have become a traffic staple [2].

2.2 Background Research

Automatic traffic cone dispensing machines are commonly used in traffic redirection and

warning of roadwork or hazards. These machines allow cones to be safely set up and collected in

the middle of the highway or other high capacity roads. These existing design solutions have

provided inspirations for specific ideas as well as the foundation to this project that can be

further explored.

2.2.1 Literature Survey

2.2.1.1 International Journal of Heavy Vehicle Systems

The International Journal of Heavy Vehicle Systems, Volume 11, Issue 2 presents the automated

machine for highway cone placement and retrieval. The journal emphasizes the importance of

traffic cones as a barrier that separates designed work zones and lanes from fast moving cars.

This paper also reports on an automated machine for placing and collecting cones, as well as its

impact on work efficiency and safety. The integration of the design is described in detail in terms

of its architecture, supporting vehicles and operations [3].

2.2.1.2 University Tun Hussein Onn Malaysia Master’s Project

This engineering design paper reports the development of an automatic traffic cone dispenser

and collector system utilizing a computer-controlled robotic arm as shown in Figure 1. The

system consists of five degrees of freedom in order to achieve maximum flexibility and

efficiency [4].

9

Figure 1. The Robotic Arm Picking Up a Traffic Cone

2.2.2 Idea Survey

2.2.2.1 AER201 2011 cone dispensing machine

The cone dispensing machine designed by a 2011 AER201 project group presents a lot of

similarities compared to our project, which can be considered as a valuable source of idea

generation [5]. As shown in Figure 2, this team used aluminum for its core structure, with hollow

spaces in between different sheets to reduce the overall weight of the robot. This idea complies

with our design objective that the robot should be lightweight, which induces less stress onto the

driving motors. In addition, the structural design of the cone dispensing mechanism at the back

of the cart also aligns with our initial concept of the mechanism.

Figure 2. The Overall Structure of the Robot Designed by a 2011 AER201 Team

10

2.3.3 Market Survey

2.3.3.1 U.S. Patent: Highway Cone Dispenser and Collector

This patented device consists of a rotatable cone conveyor that moves the cone up and down, as

well as a stripper for removing the cones from the conveyor at either upper or lower location.

This collector-dispenser system can be mounted on any standard pickup truck without specific

modification for both rotational and translational movement. Furthermore, the cone conveyor

includes flexible fingers that can firmly grip the cones [6]. Diagrams of the detailed design of the

device are included in Appendix C - 1.

2.3.3.2 U.S. Patent: Device for the Placement and If Desired the Collection of Traffic Cone

This patent describes another vehicle mounted traffic cone placement and collection machine.

The cones are stacked in a rectangular box with a hollow vertical body and an open top for cone

placement. The dispensing platform is located below the cone storage area and consists of a fork

formed of two fingers, which are horizontal and are spaced from each other to pass the body of

the cone [7]. Diagrams of the detailed design of the device are included in Appendix C - 2.

2.3.3.3 The Roadrunner

The Roadrunner by Royal Truck & Equipment Inc. consists of a traffic cone dispensing

mechanism as well as a retrieval mechanism. The dispensing mechanism utilizes a curved track

system that allows the user to load each cone separately at the higher end of the track. Once

loaded, the holders keeping the cone in place will release, which allows the cone to smoothly

drop down onto the road with the guidance of the track. The mechanism can be easily mounted

onto the side of a regular-sized truck [8].

11

3. Decision Making Standards

3.1 Requirements [9]

The core objectives considered in the design process are listed in the below in the Table 1. As we

separate the design by its functionality, some supplementary objectives are considered in

addition to the core objectives to help select the best choice for each function. These

supplementary objectives can be found in the discussion of alternatives and decision-making

process.

Table 1: Core Objectives of the Design with Corresponding Metrics

Objective Parameter Approach Scale Unit

Inexpensive Direct

material Cost

Survey 0-230 $CAD

Light Weight of the

machine

Survey 0-8 kg

Robust Stiffness of

material

Survey

Accurate Device

Precision

Survey

+Testing

 Machine

positioning

error

Fast Motor speed,

estimated

time for one

operation

Energy

efficient

Voltage/Pow

er needed

Calculation,

survey

3.2 Constraints

• The entire prototype must completely fit within 50cm * 50cm * 50cm dimension at all

operation times

• The weight of the machine must not exceed 8kg (including the cones)

• The total prototype cost must not exceed $230 CAD (before shipment and tax)

• The machine must use its own on-board power supply during any operation

12

• The operation time must not exceed 3 minutes. the time required for setting up the

machine before the operation is 2 minutes.

• The machine must be autonomous without any interaction with PC or remote control

• The machine must have an easily accessible emergency STOP bottom to stop all

mechanical moving parts immediately

• Two cones deployed on top of the crack must not contact each other and covers at least 5

cm of the crack each.

• After deploying on a hole, if there is another hole immediate next to it, within 15 cm

separation, the machine must not deploy any cone over this immediate next hole; After

deploying on a hole, if there is another crack immediate next to it, within 20 cm

separation, the machine must not deploy any cone over the crack.

• After deploying on a crack, if there is another hole immediate next to it, within 20 cm

separation, the machine must not deploy any cone over the immediate next hole; After

deploying on a crack, if there is another crack immediate next to it, within 10 cm

separation, the machine must not deploy any cone on the crack [9]

3.3 Values

The following characteristics are what the team will strive for during the conceptual design and

construction of the machine:

Practical and Realistic: We try to ensure our estimates of the performance of the conceptual

design closer to the actual performance. We do this through simulation and testing with the

prototypes, researching and more rigorous modelling.

Efficiency: We try to eliminate the unnecessary design in the robot. For example, to reduce cost,

size, weight, time or procedure. We do this through researching, brainstorming, and optimization

methods in physics, circuits, material science etc. [9]

13

4. Budget

Table 2: Budget of Electromechanical Subsystem

Function Material Portion/Number

Used on the

Robot

Total Cost Portion Cost

Basic Structure S4S OAK1*2*4 80% 6.2 4.96

 1/4*4*2HB 100% 3.98 3.98

 Hinges

Everbilt*50

10% 17.59 1.759

 Screws 6*1''

20pk

50% 2.79 1.395

 Screws [A]1/8'' 20% 4.14 0.828

 Screws [A]1/6'' 20% 3.82 1.91

 Nut*50 20% 12.5 2.5

Cone Dispensing

System

8'' TIE NAT 10% 3.48 0.348

 Gear (3D

Printing) *2

50% 0.12 0.06

 Gear Rack 4% 25.99 1.0396

 FLASHING

Alum 14''*5'

10% 13.99 1.399

 Aluminum

(Paulin Angle)

30% 12.86 3.858

 Hinges

Everbilt*20

10% 19.4 1.94

 IR Sensor 100% 0.425517 0.425517

 Foam Pad

Beige16*16*1

5% 7.99 0.3995

 Continuous

Servo motor

100% 7.772 7.772

 MG996R High

Torque Servo

Motor

100% 1.92357 1.92357

Driving System Vex Mecanum

Wheel*4

100% 77.99 77.99

14

 4*Adaptor (3D

printint)

100% 1.2 1.2

 Straight Shaft

Coupler(4mm-

6mm)

100%

 6mm D Shaft 20% 1.65155 0.33031

 DC Motor*4 300% 3.78885 11.36655

 Motor with

encoder*1

100% 11.2694 11.2694

 Screws

M3*6mm *4

20% 11.16 2.232

 Screws

M3*10mm*3

20% 8.37 1.674

Sensing System IR Sensor 500% 0.425517 2.127585

Table 3: Budget of Circuit Subsystem

Material Portion/Number Used

on the Robot

Total Cost Portion Cost

PCB Board 7*9cm 300% 0.34974 1.04922

PCB Board 3*7 cm 100% 0.157383 0.157383

L298N Motor Driver

Board

200% 0.9715 1.943

Shenzhen angled DC

Motor (indicator)

100% 0.5829 0.5829

Switch 100% 0.283678 0.283678

Capacitors 3% 1.84585 0.0553755

Voltage Regulator

L7805

10% 1.06865 0.106865

Voltage Regulator

LM338

200% 0.07772 0.15544

Transistor TIP142 200% 0.068005 0.13601

Transistor TIP147 200% 0.069948 0.139896

Resistors 1.33% 1.851679 0.024689053

Amazon Basics High

Cap Rechargeable

AA

100% 25.281387 25.281387

Table 4: Budget of Microcontroller Subsystem

15

Material Portion/Number Used

on the Robot

Total Cost Portion Cost

PIC 100% 55 55

The overall total budget of our robot is 227.48 CAD [10], with the Mecanum wheels being the

most expensive component, followed by the PIC microcontroller board and Amazon Basics

Rechargeable AA batteries.

16

5. Division of Problem

To conquer this challenge, the task of designing and fabricating the robot is properly divided into

three subsystems to split between the three group members as a starting point. The three

subsystems that will be tackled individually are electromechanical, circuits and microcontroller

programming. Within each subsystem, the project is further divided into functional areas such as

driving system and sensing system, which will be further explained in the following sections. As

each member gets more familiar and comfortable with their own subsection, the design will

converge into one single machine that integrates all three subsystems.

17

6. Electromechanical

6.1 Basic Structure

The basic framework and structure of the robot should be able to hold the traffic cones in place,

contain the driving system, withstand the weight and secure the position of the PIC board and

various electronic components. The structure should not violate any constraints on size, weight,

materials, etc. as listed above.

Figure 3. CAD Model of Main Body Structure

Figure 4. Physical Appearance of the General Structure

18

The basic structure for this robot consists of a cuboid body constructed with ply wood and an

aluminum tubing for holding the cone. The dimension of the cuboid body is 30 cm* 20.8 cm*

20cm, and the tube is positioned at the central back of the body, with a dimension of 10cm*

10cm* 27.5cm. Both the upper and lower layers have a partially hollow design for holding the

PIC board and other electronic components, with the purpose of reducing its weight. The layers

and each supporting pillar are connected by a 90-degree hinge with 4 nails.

Figure 5. Picture of Hinges Connecting the Layer and Supporting Pillars

In comparison with the proposed design at the beginning of this project, the basic shape remains

the same. Some adjustments are due to the issues arose during the construction process:

Issues #1

The proposed material for the body is aluminum, and wood for cone holder. During construction,

it is discovered that the body need substantial adjustments for compromising with circuits design.

Therefore, aluminum is not the best choice for the body. Also, cone holder does not need to be

robust as its main function is to ensure the cones are in position.

Adjustment #1

19

It is discovered that ply wood is easier to calibrate and make adjustment (such as cutting,

drilling, etc.), in which it complies with the body requirements for easy calibration. For cone

holder, aluminum sheet and four 90-degree stripes are utilized as it is light-weighted than wood.

Issue #2

The proposed size for the robot is 34.2cm*35cm*30cm. During the actual construction, it is

discovered that the robot can be reduced in width to achieve the requirement of 30 cm for extra

feature.

Adjustment #2

The width of the body is constructed to be 20.8cm, which will be under 30cm adding the width

four wheels at its side. Though, the length of the is made longer than proposed length due to its

unique design of sliding door. Height remain unchanged from proposal.

Suggestions for Improvement of the Subsystem

1). The basic structure of the robot can be reduced in size to achieve the extra design features of

compactness and portability. For example, length of the body with cone holder could be further

reduced by changing its overall structure such as positioning the holder inside the body.

2). The weight of the robot could be further reduced by replacing the wooden pillars with some

light-weighted wood.

3). For the purpose of elegance, a box for hiding the wires could be included on its side to store

the wires.

6.2 Driving System

The driving system of this robot should allow it to move forward, backward and sideways for it

to deploy two cones consecutively on the crack without being in contact with each other.

20

Figure 6. Omni Directional Driving System with Mecanum Wheels

The driving system chosen for the robot is omni directional driving system, which allows it to

perform all directional movements. The wheels are Mecanum wheels, such that the rollers are 45

degrees positioned on each wheel. Each wheel is connected to a 3D printed adaptor due to its

square-shaped opening at the wheel, which is not compatible with our D-shaped motor. A 4mm-

6mm coupler and shaft are also used in connection to the DC motor. One of the wheels is

attached to the DC motor with encode for distance record. Because the tolerance of error is +-

10cm and four wheels are identical, multiple encoders are not necessary.

21

Figure 7. Directional Control of Mecanum Wheels Mounted Parallel to the Main Body

Issue #1

The proposed design for the wheels is omni wheel (Figure 8.). During the simulation, there are

two scenarios that occurred, the first one is such that we have to increase the size of the frame,

that compensates for the 45-degree installation of the wheels, which would also increase the

overall weight of the robot; The other scenario is that there would not be enough space for the

cone holder to be positioned in between two back omni wheels. It is resulted that such wheels are

too inconvenient to install. (Refer to Appendix D)

(A) Omni Wheel (B) Mecanum Wheel

Figure 8. Omni Wheels vs Mecanum Wheels

Adjustment #1

22

The actual design consists of four Mecanum wheels, which has 45-degree rollers on the wheel. It

allows the robot to move in all directions like omni wheels without specific installation

requirements. This arrangement is easier to install and calibrate as shown in figure. ().

Issue #2

The opening of such Mecanum wheels is shaped in rectangular, which is nor compatible with the

D-shaped DC motor.

Adjustment #2

During the construction of the driving system, a 3D printed adaptor is used to connect each

wheel to a motor hub. One 4mm-6mm coupler and shaft are also used to connect the 4mm D-

shaped motor with 6mm hub.

Figure 9. CAD Drawing of the 3D printed Vex Wheel Adaptor

Suggestions for Improvement of the Subsystem

1) The overall design of this driving system is capable of performing all the functions

required. On the other hand, the fluctuation it caused has affected the accuracy of sensor

detection during the testing process. Future improvement could be done by installing

shock absorber to reduce the vibration thereby increasing the accuracy.

2) The connection of each wheel can be reduced by redesigning the 3D printed adaptor so

that it is compatible with 4 mm D-shaped motor. By doing so, the coupler and shaft can

be eliminated so that the connection part between the internal motor and wheel can be

23

reduced. Therefore, the wheels can be positioned closer to the robot body, with

withstanding more force exerted by the weight of the robot.

6.3 Cone Dispensing Mechanism

The cone dispensing system should be able to hold 12 cones in position and perform the

functionality of deploying one each time with holding the rest in place while operating.

Figure 10. Physical Appearance of Cone Holder [Front]

24

Figure 11. Physical Appearance of Cone Holder [Top]

The design for the cone dispensing system of the robot consists of one sliding door controlled by

rack and pinion, one rotating door controlled by high torque servo motor, and an aluminum cone

hold that positioned at the central back of the robot body.

Figure 12. The physical appearance of sliding door with rack and pinion

25

While operating, the rotating door positions at 180 degrees (horizontal) to hold the cone in the

holder. The sliding door slides out through rotation of gears, then slide in by reversing the

direction of rotation to hold the second last cone up by its fork-like shape. Then the bottom door

opens to a 90-degree position to drop one cone. Two servo motors are controlled directly by duty

cycle. One IR sensor is used to detect whether there is cone left in the holder (The states are

shown below).

Figure 13. State #1: All cones are positioned above the sliding door

26

Figure 14. State #2: The sliding door slides out letting all cones sitting on the rotating door

27

Figure 15. State #3: Sliding door slides in and hold up the upper cones except the first one

Figure 16. State #4: The rotating door open to 90 degree to drop one cone

Issue #1

In comparison with the proposed design, the alternating doors mechanism (Figure 17.) has been

modified due to the results of prototype simulation. The prototype is made of 3 plastic pieces,

connected by a wood stick acting as shaft. It resulted that the middle board did not have a

sufficient length for the door to go in 9 cm in order to fit in between two stacked cones. (Refer to

Appendix D)

28

Figure 17. Diagram Illustrating the Alternating Doors Mechanism

Adjustment #1

The actual design follows the arrangement described above.(Figure 17.)

Issue #2

The compatible gear with the rack set has a rectangular opening in the centre, which is difficult

to connect with the servo motor.

Adjustment #2

A designed 3D CAD model of gear is obtained from Myhal Fabrication Facility (shown in figure

()), and it is connected through the connector piece of the servo motor. Servo motor is placed in a

hand-made holder shown in figure (), to hold it in place where the gear can perfectly align with

the rack constructed on the sliding door.

29

Figure 18. 3D CAD Model of the Gear Compatible with the Rack and Servo Motor

Figure 19. Physical Appearance of the Servo Motor and the Holder

Issue #3

For the detection of cones inside the holder, we originally decided on using a pressure sensor

located on the door to detect whether there is cone left through the reading of weight. During

construction, it is discovered that pressure sensor is costly and difficult to calibrate through

microcontroller.

Adjustment #3

30

The replacement for pressure sensor is one IR sensor that positioned at the center bottom of the

cone holder (on the aluminum sheet) shown below. The sensor will light on when there is cone

inside and light off when no cone left.

Figure 20. Physical Arrangement of IR Sensor Detecting Cone Number

Suggestions for Improvement of the Subsystem

1. The size of the cone holder can be reduced by 1cm per side to ensure the cone slide

properly though four 90-degree aluminum pillars. (*note: the screws head need to be

further polished or replaced by epoxy)

2. In order for the cone to be in position without rotating while being dropped, the future

improvement could be done on constructing a track shaped as a quarter circle at each side

of the rotating door. While operating, the track will ensure the cone slide from the door

smoothly to improve accuracy. The shape will ensure the door and track are not in

contact with the dropped cone.

6.4 Sensing System

The sensing system should be able to detect any hole or crack. For correctly dropping the cone

on the right position, it should also recognize its position with an acceptable range of error within

the lane. Considering the following constraints:

1. cones cannot overlap with each other.

2. each cone deployed on a crack must cover at least 5 cm of the crack

31

3. cones cannot be on or outside the lane.

4. two cones should be deployed on a crack.

We generalized the cases into three with the arrangement of sensors as following. In addition, the

sensing system should also perform the line following function.

Figure 21. Picture of Detection Sensor Arrangement

The number of sensors chosen in the system is 5, such that 2 on the left of the robot are for line

following, with a distance <= 2cm between two sensors. The other 3 sensors are for hole/crack

detection. The position of the sensor is calculated (Table 5), define (1) as the right detection

sensor, (2) as the middle sensor; (3) as the left detection sensor:

Table 5: The relative position of the first left detection sensor is 5cm from the line following

sensor; The second one is 7.5cm from the first detection sensor; The third one is also 7.5cm,

from the second detection sensor.

Steps vs.

Conditions

(1) & (2) =0 (2) & (3) =0 (1) & (2) &

(3) = 0

(2) = 0

1 Right Move

1.5cm

Left Move

1.5cm

Left Move

4.5cm

Drop 1 cone

2 Drop 1 cone Drop 1 cone Drop 1 cone /

32

3 Left Move 9cm Right Move 9cm Right Move 9cm /

4 Drop 1 cone Drop 1 cone Drop 1 cone /

5 Right Move

7.5cm

Left Move

7.5cm

Left Move

4.5cm

/

The sensors are positioned at the front of the robot through one 25cm piece of wood and 90-

degree hinges.

Issue #1

In the proposed design, a sensor mover is introduced, such that the sensor is moved through the

rotation of rack and pinion. During construction, the process is difficult to achieve and require

sophisticated calculations and manufacturing (refer to Appendix D)

Figure 22. Diagram Illustration of the Slider Mechanism

Adjustment #1

The modified design consists of 5 sensors, such that 2 are for line following and 3 are for

hole/crack detection. Detailed calculation shown in Table 5. The middle sensor is purposely

constructed further back than the left and right detection sensors so that the side sensors would

detect the crack in advance of the middle sensor thereby crack would not be recognized as a hole.

Suggestions for Improvement of the Subsystem

1. The sensors are too sensitive to external environment and lighting. Some future

improvements could be done by adding cylindrical LED specifically around the IR

receiver to ensure the accuracy of detection.

33

2. To reduce risks of not detecting hole or crack, adding another row of sensors will help

increase the accuracy and reduce the uncertainties.

6.5 Indicating System

The indicating system should consists of an indicator that provides different forms of signal to

notify for hole detection or crack detection.

The indicator used in the robot design is a laser cut rotating two-sided flag with hollow word

“crack” and “hole” on each end, which is controlled by DC motor. H-Bridge circuit allows it to

rotate to hold the right “word” up based on the obstacle (hole or crack) detected.

Figure 23. CAD Model of Indicator Flag

34

Figure 24. Picture of Laser Cut Double Flag

Suggestions for Improvement of the Subsystem

1. Future improvement could be done on securing the flag on the motor. For example, using

screws and nuts

2. Replace the DC motor with servo motor would make the calibration process easier and

more accurate as the rotation of servo motor is governed by a defined angle, it would be

able to replicate an exact angle.

35

7. Circuits

7.1 Driving System Direction and Speed Control

In order to control the speed and direction that the robot drives at, the circuit that powers each

Mecanum wheel needs to be set up so that the rotation of the motors can be controlled by output

signals from the PIC microcontroller. To achieve this goal, H-Bridge circuits are utilized to

translate high and low signals from the PIC to clockwise and counter-clockwise rotation of the

driving motors.

Figure 25. H-Bridge Motor Driver Circuit

As shown in Figure 25, if the clockwise signal is at 5V and the counter-clockwise signal is at 0V,

the connected motor will spin in the clockwise direction, and vice versa. However, given the

configuration in the diagram, it can be seen that if the four wheels were to be controlled

separately, a total of 8 pins would be needed on the microcontroller. To prevent this redundant

use of output pins from the microcontroller board, the first solution that we came to was to share

the PWM signals given to DC motors powering diagonal wheels. This approach was made

possible due to the rotation combination of the Mecanum wheels we are using.

36

Figure 26. Mecanum Wheel Rotation Combination and Corresponding Motion

Under normal operation routines, the robot will only perform forward, reverse, right slide and

left slide motions. As shown in Figure 26, in these four motion modes the diagonal wheels will

always rotate in the same direction. As a result, by connecting the DC motors powering these

diagonal wheels in parallel in the H-Bridge circuit, each pair of diagonal motors are controlled

by the same signals from the PIC. This reduces the number of pins required from the

microcontroller board by half.

Figure 27. Left and Right Adjustments via Speed Difference

Nevertheless, we discovered that this design has a fatal flaw. In order to effectively follow the

side lines of the track, the robot will need to make small adjustments to the left or right while

maintaining forward motion. As shown in Figure 27, this can only be achieved if there is a

difference in rotational speed between the left-side wheels and right-side wheels of the robot.

Having the same PWM signal for diagonal DC motors satisfies our directional control

requirements, but conflicts with the speed control adjustments that are crucial to line following.

37

Since both pairs of diagonal wheels are controlled using the same PWM signals, it means that

they will have a relatively similar rotational speed. Thus, it is impossible to make small shifts

while driving forward as we intended with the parallel setup.

To deal with this issue, the approach we decided to take was to use three pairs of PWM signals to

control the four DC motors. While the front-left and back-right wheels are still controlled by the

same signals and maintains a similar speed, the front-right and back-left wheels are controlled

separately by two pairs of PWM signals. As a result, a difference of speed between the left-side

and the right-side of the robot can be achieved by varying the duty cycle of the two

independently controlled wheels utilizing a reduced total of 6 pins from the microcontroller

board.

Figure 28. L298N Motor Driver Module

Furthermore, to ensure consistency between the H-Bridge circuits used for the driving system,

the premade L298N motor driver modules were used instead of handmade H-Bridge circuits.

This eliminates the possible fluctuations in voltage supplied to the DC motors due to poor

connections between electrical components.

Figure 29. Left and Right Adjustment via Characteristics of Mecanum Wheels

38

Looking back to the final solution that we settled on, an improvement that could be made is to

keep the diagonal setup with only 4 pins and adjust the direction of the robot using the benefits

of Mecanum wheels instead. If the left and right adjustments during line following were

achieved using the method indicated in Figure 29, the setup that we initially came up with would

have remained an effective approach, which saves another 2 pins for other inputs and outputs.

7.2 Detection and Line Following Sensors

The sensors responsible for crack and hole detection as well as trajectory maintenance are IR

reflective sensors. These sensors are the best choice for our project because we do not need to

detect physical objects. Furthermore, out of all the light sensors in a reasonable price range

within the budgeting limit, IR sensors have the best price to performance ratio.

Figure 30. Physical and Circuit Diagram of TCRT5000L IR Sensors

The particular type of IR sensors that were used composed of IR LEDs and IR transistor pairs as

shown in Figure 30. The IR LED transmits a beam of IR light into one direction, and the IR

transistor will have a different discharge response based on the intensity of the IR light bounced

backed after contacting a surface. This sensing mechanism is perfect for crack and hole detection

for dark surfaces like the hockey tape that will be used, which reflects a minimum amount of IR

light.

39

Figure 31. The TCRT5000L Sensors were Installed to Maintain a 2.5 mm Distance to the

Ground

The first model of IR sensors that we installed onto the robot were TCRT5000L IR sensors. The

TCRT5000L operates very accurately from an operating distance of 1mm to 8mm, with the peak

performance distance being 2.5mm. Despite its high-performance ratings, the downfall of these

sensors was that they were too sensitive for our operations. Due to constant vibrations of the

robot while in motion, the distance between the sensor and the ground are constantly fluctuating.

Therefore, the optimal operating range of the sensor cannot be set as the detecting range changes

in its already small range of operating distance. As a result, whenever the robot approaches a

hole or crack, the sensor constantly switches between reading high and low.

Figure 32. EK1254x5C IR Reflective Sensor Modules

As an alternative, we chose to replace the TCRT5000Ls with EK1254x5C IR sensor modules

instead. The EK1254x5C modules have a much flexible operating range of 2 – 30cm. So, we

were able to set a feasible sensitivity within this range so that it reads stable inputs under

vibrations.

40

Nevertheless, IR sensors are still very susceptible to ambient lighting and environment changes,

which means that it requires careful calibration when placed in a new lighting and environmental

condition. This means that a possible point of improvement is to add more security to the sensor

readings by using analog IR sensors instead of digital ones. Multiple readings can be taken over

a short period of time with analog sensors until they can be trusted. By taking analog readings,

filtering processes can also be added using the microcontroller to ensure the readings are

relatively reliable rather than completely trusting the digital inputs. In addition, more sensors

could be added to the front of the to ensure accurate detection of holes and cracks. This adds an

enhanced layer of protection because it levitates the pressure of relying solely on the input from a

single sensor in its position.

7.3 Directional Control of Indicator Flag Rotation

Similar to controlling the rotation direction of the driving DC motors, the DC motor powering

the indicator flag is also connected using a H-Bridge circuit structure.

Figure 33. Circuit Diagram of Modified H-Bridge

However, after soldering the basic H-Bridge layout as shown in Section 7.1 of this report, a

major issue that arises from that configuration of the circuit is that the transistors tend to heat up

41

quite a bit when being powered. After carefully consulting Section 6.2.2.5 from the AER201

textbook, a modified version of the basic H-Bridge circuit was completed as shown in Figure 33.

Figure 34. Soldered Modified H-Bridge Circuit

Since DC motors can draw a large amount of current when operating, the transistors get heated

due to the current moving through it, which leads to power dissipation. In this version of the H-

Bridge circuit, an additional six resistors are added to the base of the transistors to prevent high

amounts of current flowing into the circuit. On top of that, diodes are added between the

collector and emitter of the transistors to prevent reserve biasing of the current. Overall, the

modified version of the H-Bridge circuit adds extra layers of protection to levitate the

deterioration of components and eliminate possibilities of short circuiting.

7.4 Power Management

Table 6: Power Consumption of Electrical Components in the Robot

Component Voltage

Supplied (V)

Current Drawn

(mA)

of Unit Total Current

(mA)

DC Motor 10.8 - 12 250 4 1000

MG996R Servo 5 500 1 500

SM-S4306R

Servo

5 100 1 100

IR Sensor 5 30 6 180

Rotary Encoder 5 5 1 5

PIC 10.8 - 12 500 1 500

42

Based on the calculations done in the table above, it can be concluded that the ideal power

supply for the robot would be generating 10.8 - 12 V in terms of voltage and at least 2200 mAh

in capacity to avoid constant charging. Therefore, we chose to use the Amazon Basics High

Capacity Rechargeable Batteries as our source of power. Each cell of these batteries can generate

1.2 V of voltage and store 2400 mAh of power. With 6 of these cells connected in series, the

total voltage of the power supply can reach 10.8 V while still maintaining a 2400 mAh capacity.

Figure 35. A Cell of Amazon Basics High Capacity Rechargeable Battery

With this power supply, both the driving DC motors and the PIC microcontroller board are

powered directly without any regulations. This is due to the fact that we need as much power as

possible on the driving DC motors to pull the weight of the entire robot to go forward. As for the

PIC, it has an embedded voltage regulator on it so it can be self-regulated. For the rest of the

components, the batteries are regulated down to 5V to satisfy the power ratings of the

components. The components are regulated by two LM338 and one LM7805 voltage regulators,

and they are evenly distributed based on current consumption. This distribution reduces the

amount of power dissipation that could occur while current travels through the voltage

regulators. However, heat sinks were installed on the regulators as well just in case heat is still

produced in the process.

43

8. Microcontroller

Microcontroller takes charge in processing and sending signals from and to circuits, instructing

the robot to handle external situations and communicating information to the user. It controls the

robot through invisible software computation.

A PIC microcontroller from Microchip Technology Inc. and a customized development board

(produced by AER201) are used as the main foundation in the software design. The advantages

of the PIC microcontroller, as recommended by the instructor and client, are its fast operation,

low power, low cost and ease of programming (Appendix D).

The required functions can be divided into the following categories:

User Interface: LCD and Keypad Interrupt and interface design for retrieving data and

starting an operation

Real-Time Clock: Independent real time clock on the robot

IR sensor signal reading and processing

Encoder signal reading and processing

Permanent memory of operation result (read and write)

Servo motors control for cone deployment gates

Speed and overall direction control of Mecanum wheels

 Main Function

 Global variables

 PC interface: allow operation data to be readily download and display on a computer

Line following

Indicator Flag DC motor control

The following paragraphs explain how we approached these functions required. See Appendix B

for codes and detailed pseudo code (as the comments of codes) of all the functions.

8.1 User Interface:

A 4 by 4 Keypad is installed on the development board to allow users to input various

commands. Keypad input is connected to RB4-RB7 of the I/O pins. The four bits have 16 (2^4)

combinations, corresponding to the 16 buttons on the keypad. Pins RB4-RB7 have the function

of “interrupt on change”. Once any of the four bits changes (keypad pressed), RB1 (interrupt 1)

will set its flag to 1 and hence signals the processor to handle the interrupt (if interrupt 1 is

enabled). Reading the value of RB4-RB7 in the interrupt handler, one could tell which command

is issued hence change the corresponding global variable(s) and re-directs the main function.

44

A Character LCD is used to display user instructions and history operation results.

For parallel pages, the display rotates automatically to reduce the steps a user may otherwise take

for skimming. At the same time, information is broken down to three hierarchical levels to

reduce the period of rotating in each level.

Figure 36. Flowchart of User Interface.

Some extra features are achieved in combination with permanent data function.

1. Users can clear the history data through keypad buttons without going to back-end

organization, which is error-prone.

2. Past operations can be easily identified by its starting time.

3. The length of operation list is dynamic and can change based on memory, instead of

displaying some blank slots when unnecessary.

8.2 Real-Time Clock:

DS1307 64 x 8, Serial, I2C Real-Time Clock is installed onto the board. It transmits clock data to

the main PIC through I2C pins and can be read by programs. Once initial time is reset to the

local time, the clock will be synced if an independent lithium coin battery is connected to the

RTC. In this robot, RTC is read both in standby display and throughout its operation to find the

45

operation duration. To ensure the time is not overrode repeatedly, the programmer needs to call

the reset function only once and call it outside of main function.

8.3 IR Sensor Signal Reading and Processing

The five IR sensors used take up 5 independent input pins. As a digital input, a “high” (1)

indicates that it sees a black color while a “low” (0) indicates it sees a lighter color. This is used

to identify the black hockey tapes that simulate the lanes and obstacles. The left two sensor

signals are processed together to correct robot position when moving forward and following the

lane. The rest three sensors, based on their physical position on the robot, tell the programs shape

and horizontal location of the obstacles.

Once the obstacle is identified, the program records it on a detection list, and compares it with

historical data to decide if cone(s) need to be deployed at this location. It has a separate list

indicating the deployment information.

8.4 Encoder Signal Reading and Processing

Only one encoder is needed in the robot to indicate its overall motion. We calibrate the

parameters to relate encoder reading and the distance it travels sideways and forward (or

backward) respectively. According to the datasheet of the encoder [], the encoder output

produces 334 pulses every cycle rotated. To avoid missing pulses, we use an external interrupt to

read the encoder signal, instead of polling it at the main function which contains other

operations. Encoder output is read every iteration in the main robot operation loop. Temporary

cycle counters and distance counters are separate. Number of interrupts is accumulated into

temporary cycle counters. Temporary cycle counters are accumulated into the corresponding

distance counter (horizontal or straight) and then being cleared.

8.5 Permanent Memory of Operation Data (Read and Write)

Permanent memory is stored using “data EEPROM memory” of the PIC. It has the capacity of

1024 bytes in total and each address/byte has 8 bits capacity. Table 7 shows the storage of

operation data. The first two bytes store the pointer to the next writing address. They are updated

every time memory writing is finished. They are also used to calculate the number of operations

since last reset of memory. Each operation uses a 56-byte block to store all its data (as indicated

by the green block). Once an operation is completed, a function writes the current data into

EEPROM byte by byte and at the end adds the write_pointer (bytes 0 and 1) by 56. Note that

each distance value is stored by 2 bytes because the largest possible value is around 400(cm)

however 1 byte can only represent 255 at largest.

Table 7: Data EEPROM Memory Organization.

46

0 ADDRH 33 NUMBER OF CRACKS DETECTED

1 ADDR 34

DISTANCES OF THE CRACKS FROM THE
START LINE (MAX 12 HOLES), EACH

DISTANCE TAKES UP 2 BYTES TO STORE.
DEFAULT = 0.

1ST BYTE = INT(DISTANCE/256).
2ND BYTE = INT(DISTANCE%256).

2 START_TIME_HH(24) 35

3 START_TIME_MM 36

4 OPERATION_TIME_(DURATION)_HOURS 37

5 OPERATION_TIME_(DURATION)_MINUTES 38

6 OPERATION_TIME_(DURATION)_SECONDS 39

7 NUMBER OF CONES DEPLOYED 40

8 NUMBER OF HOLES DETECTED 41

9

DISTANCES OF THE HOLES FROM THE START
LINE (MAX 12 HOLES), EACH DISTANCE

TAKES UP 2 BYTES TO STORE.
DEFAULT = 0.

1ST BYTE = INT(DISTANCE/256).
2ND BYTE = INT(DISTANCE%256).

42

10 43

11 44

12 45

13 46

14 47

15 48

16 49

17 50

18 51

19 52

20 53

21 54

22 55

23 56

24 57

25 … (NEW OPERATION DATA INSERTED TO THE
END OF THE EXISTING DATA) 26 …

27 1023
28

29

30

31

32

A “one_byte_reader” function is also written to be called when displaying the data.

8.6 Servo Motor Control for Cone Deployment Gates

The two servo motors used in the final design are MG996R and SM-4306R. MG996R controls

the lower gate (wood plate) which rotates ~90 degrees when instructed to open or close. The

angular position is directly controlled by the duty cycle of the input. The second servo motor

47

rotates the pinion and hence slides in and out the second gate [pic of mech]. SM-4306R uses duty

cycles to control the orientation and speed of rotation. When duty cycle is around 1.5ms/20ms

(middle point), the motor stops. When duty cycle is less than that, the motor rotates clockwise

and vice versa. Speed is directly proportional to the difference between the set duty cycle and the

middle point. Outputs to the servo motors are set to high and low alternatingly with different

time lags to simulate the desired duty cycle. Looping time is calibrated for the second motor to

control its angular displacement and hence the distance the second gate slides in and out.

8.7 Mecanum Wheels (DC Motors) Speed and Overall Direction Control

The speed of DC motors is controlled by duty cycles. As mentioned in section 7.1, direction of

the robot is regulated by slowing down one side of the robot.

8.8 Main Function

The main function integrates all the subfunctions to call them when necessary. The operation

routine is organized by the main function.

1. The Configuration of I/O Ports.

Pins are assigned as following:

Table 8: Pin Assignment on PIC Ports

Pin name Input /Output Description

RD0:RD1 Out Indicator Flag DC Motor

RD2:RD7 Out LCD Display

RB4:RB7 In Keypad Input

RB1 In Interrupt 1, Keypad Interrupt on Change Bit

RC3:RC4 In RTC

RB0 In Interrupt 0, Encoder of wheels

RB2 In Left Detection Sensor

RB3 In Middle Detection Sensor

RA1 In Right Detection Sensor

RA3 In Cone Number Sensor

RA4 Out Sliding Door Servo Motor

RA5 Out Rotating Door Servo Motor

RE0 In Left Line Following Sensor

RE1 In Right Line Following Sensor

RC1:RC2 Out Back Left Wheel Motor

RC5:RC6 Out Front Left and Back Right Wheel Motors

RC7, RC0 Out Front Right Wheel Motor

All ports are configured to be digital. In general, one DC motor needs 2 pins to control 3 types of

motions:

48

1) clockwise, 2) anticlockwise, 3) stop.

2. Regular Counter Updater

This function updates operation time counter by reading from RTC. To make sure the robot

returns to the start line before time’s up (3 minutes). As tested, it usually takes 1.5 minutes to

complete the operation, which is far from the limit. Therefore, the precision of the counter can be

lowered to save cost: the updater is only called per several iterations in the main loop to save

time cost.

Originally, the distance counter is also updated inside the regular updater. But the precision

required for distance is much higher (should be as high as possible), so distance updater is

moved to the outside and called every iteration of the main loop.

3. Completion Return

Indicator flag returns to “None” (flat) position. -> robot slide to the right until the entire robot is

outside the lane -> robot moves backward until it’s entirely behind the start line -> robot slide to

the left until it arrives the standby position -> close the sliding door if it’s open before -> read the

final operation time -> write operation data into permanent memory -> toggle the “completion”

Boolean variable and initiate standby display page counter.

4. Restart and Initialization

Restart time and distance counter, initialize record variables, initialize transition variables, enable

encoder interrupt, communicate with the user about the state (start running), and toggle the

“completion” Boolean variable to re-directs the branch to go to in the following main loop

iteration.

8.9 Global Variables

Over 45 global variables are used per operation, as listed in Appendix B. They can be

categorized to RTC variables, transition variables, record variables (see Definitions), LCD

display state variables, constants and parameters, high-level program state switches, and

EEPROM variables. Figure 37 shows a snapshot of the global variable list.

49

Figure 37.

8.10 PC Interface

This feature allows history operation data to be readily downloaded and displayed on a

computer. As MPLAB X IDE can view EEPROM memory of the microcontroller connected to

it, the user can open this window and copy the data into an extra Python program we wrote to

interpret the hexadecimal numbers stored as normal language. (see Appendix B for this program

code). Figure 39 shows an example of the output of the Python program.

Figure 38.

50

Figure 39.

8.11 Line Following

The two leftmost sensors at the front separate with each other by the width of the left border of

the lane. Going straight, the robot will read “high” for both sensor inputs. However, a difference

in the two sensor readings indicates the deviation of (the front of) the robot from the correct

track. When moving forward, the program constantly polls on the reading and adjusts the

direction of movement.

A previous version of design checks the movement much less frequently (1 check per 10 cm).

Through testing, we found that the robot will deviate too much during the time lag and can’t go

back to the correct track smoothly. So, we then decided to integrate checking and sensor

feedback all the time with straight movement. In addition, a previous method of adjusting is to

slide the robot horizontally. But with the rapid checking, a less abrupt turning will be enough for

smooth following, not to mention that sideway motions take more current from the circuit.

51

8.12 Indicator Flag DC Motor Control

Indicator Flag has three different states: hole, crack, flat. Flat occurs at the beginning of an

operation until any obstacle is detected. Besides, the flag is turning flat when operation is

complete. With the physical shape of the flag, we should send signal to allow the motor to rotate

90 degrees and 180 degrees. This is achieved by calibrating the time to rotate. When the motor

needs to rotate in an opposite direction, the two signals sent to it swap.

8.13 Dispense Routine Function

One function called “drop_bool_function” reads the current obstacle and compare with

deployment information of last obstacle to return if cone(s) should be deployed on this obstacle.

If cone(s) should be deployed at this location, the obstacle’s identity and location will be

recorded in an array specifically for deployment data. Since sensors and in the main function,

deployment queue is read in every iteration so that when the deployment location is reached, the

robot can stop and execute the deployment.

8.14 Future Improvement for Microcontroller

A few colleagues were invited to help us test on the user interface. The overall clarity is

appreciated. The key feedback for improvement is on controllability. As we design the LCD to

rotate automatically, people who want more time to read each page may find it troublesome

waiting the next iteration to read the page again and would hope to have the control of when to

flip pages. In the future, if possible, the engineers can potentially design a new data structure that

allows more controllable interface.

8.15 Simulation Results and Takeaways

Figure 40 shows a test of RTC display. As seen from the picture, it didn’t work properly. After

that we read the datasheet of the RTC (Fig 41), and found out the right way to read time from its

registers. At the end of testing, the RTC works well(Fig 42).

Figure 40.

52

Figure 41.

Figure 42.

The encoder is tested when connecting to RB0 interrupt port. For every 10 ticks rotated

manually, the data is recorded. As can be seen from Fig 43, uncertainty is around 2 ticks. This is

within our tolerance.

53

.

Figure 43.

54

9. Integration

The first eight weeks of this course focus on completion of subsystem: electromechanical,

circuits and microcontroller. The following weeks focus on the integration of systems for the

machine to function automatedly.

The overall integration could be divided into two phases. During the first phase, most of the

integration is done through physical connection of actuators, circuits and microcontroller. During

the second phase, the construction and integration are mostly completed and finalized, the focus

in this stage is the calibration of the machine through programming, and also some adjustments

on the actuators or arrangement of the robot.

9.1 Phase 1: Physical Integration/ Functional Calibration

• Microcontroller tested the code with actuators such as DC motors, motor with encoders,

servo motors to check the response to signal from PIC. Circuit member tested on the

protoboard to check if the arrangement of the circuit elements is correct.

• All connections between electrical components and the power supply are securely

soldered together for stronger physical and electrical connections.

• Designing specific layout and installing PIC, PCB board, battery, motor driver board and

emergency stop on the robot

• Arranging and Securing the wires and actuator

9.2 Phase 2: Accuracy Calibration

During the two phases of integration, specifically during the calibration in the second phase,

several problems arose, thus some adjustments are made to the design as well as the

constructions:

• Reduce the length of the 90-degree aluminum pieces at the back of the robot such that the

cone can move freely below the cone holder without touching it.

55

Figure 44. New Appearance of the Cone Holder After Cutting the Back Pillars

• Installment of foam around the side of the cone holder to ensure the cones are in position

without any rotations.

Figure 45. Foam Installed Around the Cone Holder to Hold the Cones in Place

• Replace the detection sensors/ line following sensor used for detecting Hole/ Crack with

IR sensors with greater range due to the fact that lighting and external environment affect

detection on SF floor.

• Using zip ties to ensure the DC motors attached to the wheels are aligned straightly

thereby reducing the vibration while moving

56

Figure 46. Zip Ties Added for Securing the Motor

• Sanding the edge of the sliding door for it to easily slide in between two stacked cones.

Figure 47. Illustration of How Sliding Door Hold Up the Upper Cone

• Adjusted the angle of the rotating door for more accurate drop (modified to 85 degrees

instead of 90 degrees)

• While calibrating the parameters of encoder, servo, flag rotating time, instead of using

perimeter since it is hard to measure. Instead, use cycles directly, and measure critical

57

distance to keep the parameters. In addition, keep a record of the testing results to

squeeze and get precise parameter

9.3 Future Improvements and Suggestions

1. Use keypad to adjust a small parameter, instead of changing it on PC and reload

everything. -> boost efficiency.

2. Protection for exposed circuits and wires

3. Risk management on some components. For example, adding another row of sensor for

hole/crack detection to reduce uncertainties

*Note: detailed future improvement is listed in each subsystem section above

 4. Potential to extend to larger capacitance. For example, cone holder can be extended

higher to hold more cones once; EEPROM can be modified to store more information than 4

operations; width/length of the lane for the robot to operate can be extended.

58

10. Time Management

Initial and Accomplished Schedule (Gantt Charts)

Figure. 48-1

59

Figure. 48-2

Figure. 48-3

In the Gannt Chart above, pre-set milestones/goals are labelled as orange points while blue

blocks represent detailed tasks that have done, and the width represents their duration.

60

From the chart, we noticed that a few goals are not met on time. For example, wiring and

soldering was finished later than Physical Integration milestone. In addition, not all risks are

addressed properly before the accuracy debugging deadline, which influenced the result in final

competition. Apart from that, the team generally maintained a good progress and everyone in the

team was on the same page, with a clear vision on the priorities at various stages of the project.

This enabled the team to finish functional integration ahead of time. For future improvement,

risk management should be a critical point the team need to pay attention to before the

presentation/demonstration. For example, the stability of the robot performance influences the

results a lot. The team may consider strategies like redundancy in the future to make sure the

robot works.

61

11. Conclusion

In conclusion, the robot, named after Mr. Krabs, can complete a detection and deployment

operation over 4-meter lane within 1.5 minutes. Its omni directional wheels allow it to drive

stably and flexibly on a variety of road conditions. Permanent data memory of its microcontroller

also extends the functionality and sustainability of the robot. To increase the usability, user

interface (keypad and display content) is carefully designed so that it is accessible for a wide

range of users. In addition, the permanent logs can be easily downloaded to a personal computer

and automatically interpreted from computer languages to human languages.

To improve the performance of the robot, future engineers can work on detection and

deployment accuracy. The current concern is that the type of sensors used, in combination with

their physical arrangement, vary readings readily when external lighting conditions change.

Secondly, current deployment method relies on gravity of the cones themselves. Extra cares

should be taken to ensure the cones to be deployed at a precise position. If new mechanism is to

be implemented, existing cone holder can also be readily dissembled and adapted to a potential

new design.

The project is a valuable experience for student engineers to gain hands-on experience as it

stretches their electromechanical, circuitry and programming expertise, as well as knowledge of

driving systems, sensing systems and software data processing. Furthermore, the simple but

effective conceptual design can be applied to many industry cases. Therefore, perspective

engineers are encouraged to take on this opportunity and keep working on the project.

62

12. Final Design

12.1 Description of Overall Machine

Figure 49. 3D Model Illustration of the Integrated Robot

As shown in Figure 49. The overall design consists of five systems: sensing system, driving

system, cone dispensing system, indicator system and user interface.

The Driving system is the omni directional driving system consists of four Mecanum wheels,

which allows the robot to move sideways to deploy two cones on the crack consecutively. Each

wheel is connected to a DC motor controlled by signal from PIC. One with encoder to record the

distance.

 Cone dispensing system consists of three components: sliding door controlled by rack and

pinion; rotating door controlled by high torque servo motor and an aluminum cone holder. While

operating, the rotating door will initially position at 180 degrees to hold the cone in the holder;

then the sliding door slides out through the rotation of gears, that lets all cones sitting on the

rotating door; it then goes in to hold up the upper cones except the last one; Then the rotating

door open at a degrees of 85 to drop one cone.

63

In the sensing system, five IR sensors are positioned at the front of the robot with specific

distances (5cm RDS -7.5cm MDS -7.5cm LDS) for detecting crack or hole on the lane. The

middle sensor is for detecting hole while the left and right ones are for cracks. The adjacent two

sensors at the left are for lane following.

The Indicator of our robot is a rotating two-sided flag with hollow word “crack” and “hole” on

each end, which is controlled by DC motor. H-Bridge circuit allows it to rotate to hold the right

“word” up based on the obstacle (hole or crack) detected.

Figure 50. Physical Appearance of the Robot on the Lane

12.2 Standard Operating Procedure

The robot will be placed on the lane with the two line-following sensors facing the black areas.

When power is given, the robot is in the standby mode. A user can choose to:

64

1. start a new operation,

2. read history operation data, or

3. clear history data

through keypad commands (see section 8.1 for details). Assume this is the first operation since

last time the history is cleared, the user will now want to run a new operation. The user is

responsible for loading as many cones as they desire, ideally within 12.

When ‘A’ is pressed on the keypad, the robot moves forward following the lane. At the same

time, it keeps an eye on the road obstacles (holes or cracks mimicked by black hockey tapes of

different shape). When an obstacle is sensed, the robot shows the identity of the

obstacle(hole/crack) through a wood indicator flag. After that, it keeps going forward and

detecting, but remembering the deployment task if the obstacle needs one (see section 3.2 for the

criteria). Besides regular moving and sensing, if the cone holder reaches the deployment

location, it stops and executes the deployment. It deploys one cone directly onto a hole and

moves left and right to deploy two cones on a crack based on the instruction (see section 6.4

Table 5 for details). If cones are used up, the robot will still complete detection over the 4-meter

lane but will not execute deployment routine. This allows the robot to use the most out of its

functionality and gives the user most information. At the same time, it saves a lot of time to skip

the attempt to move sideways and deploy cones when no cones are left.

When the robot reaches the destination, it slides to the right of the lane then drives backwards

until the entire robot is behind the start line. It also slides to the left at the end to return to the

standby position. Both the deployment sliding door and the indicator flag return to initial

position.

When the robot is in standby mode, the user can do the next operation as instructed by LCD

display.

65

 13. Appendix

Appendix A: References

[1] "INTERSTATE RUBBER PROD. CORP. v. RADIATOR SPECIALTY CO". United States

Court of Appeals, Fourth Circuit. 214 F.2d 546 (1954). Retrieved 11 April 2019.

[2] "The Surprising History of the Traffic Cone: Spring is here, Chicago!", Brancato Snow & Ice

Management, 2018. [Online]. Available: https://www.brancatosnowremoval.com/the-surprising-

history-of-the-traffic-cone-spring-is-here-chicago/. [Accessed: 11- Apr- 2019].

 [3] Inderscienceonline.com, 2019. [Online]. Available:

https://www.inderscienceonline.com/doi/abs/10.1504/IJHVS.2004.004038. [Accessed: 30- Jan-

2019].

[4] S. ARIFFIN, AN AUTOMATIC TRAFFIC CONES DISPENSER AND COLLECTOR

SYSTEM. 2014.

[5] "AER201 - Historical Projects", Aer201.aerospace.utoronto.ca, 2019. [Online]. Available:

http://aer201.aerospace.utoronto.ca/History/team.aspx?ID=1&Team=1&Project=Project1&Year

=2011. [Accessed: 30- Jan- 2019].

[6] E. Luoma, "Highway cone dispenser and collector", US5054648A, 1990.

[7] Larguier, F. (1996). DEVICE FOR THE PIACEMENT AND IF DESIRED THE COECTION

OF TRAFFIC CONES. 5,525,021.

[8] Royal Truck & Equipment. (2017). Cone Placement & Cone Retrieval System - Royal Truck

& Equipment. [online] Available at: https://royaltruckandequipment.com/cone-placement-

retrieval-system/ [Accessed 30 Jan. 2019].

[9] R. Emami, Request for Proposal#1: The Traffic Cone Deployment Machine. 2019.

http://www.leagle.com/decision/1954760214F2d546_1587

66

Appendix B: Complete Code for Microcontroller

1. <prototypes.h>

/*

 * File: prototypes.h

 * Author: Chen

 *

 * Created on February 25, 2019, 2:04 AM

 */

#ifndef PROTOTYPES_H

#definePROTOTYPES_H

#ifdef __cplusplus

extern "C" {

#endif

#ifdef __cplusplus

}

#endif

//functions

void configureports(void);

void readRTC(void);

void rtc_set_time(void);

67

unsigned int digit0(unsigned int f);

unsigned char nextLine(unsigned char g);

void printintarray2(unsigned int* a,int b);

void ot(unsigned int* print_data);

void Cones(unsigned int* print_data);

void Holes2(unsigned int* a,int b);

void Cracks(unsigned int* a,int b);

void sensingH(void);

void sensingC(void);

void page1(void);

void page2(void);

void page3(void);

void page4(void);

void page5(void);

void page6(void);

void data1(void);

void data2(void);

void data3(void);

void data4(void);

void initialize_func(void);

void initmoving_disp(void);

void high_priority interrupt interruptHandler(void);

void read_encoder(void);

int distinguish_H_C_function(void);

int hole_drop_bool_function(void);

int crack_drop_bool_function(void);

68

void hole_dispense_function(void);

void crack_dispense_function(void);

void sensed_function_3(void);

void normal_updater(void);

void standby_rotating(void);

void middle_crack_drop(void);

void left_crack_drop(void);

void right_crack_drop(void);

void record(char corh);

void L_I(void);

void R_I(void);

void backw(void);

void Stop(void);

void straight(void);

void turn_left(void);

void turn_right(void);

void moving(void);

void move_to_hole(void);

void drop_record(int a);

void drop_function(void);

void completion_return(void);

69

void clear_mem(void);

void update_pointer(void);

void completion_write(void);

void read_pointer(void);

void pntr_head_read(void);

void subtract(void);

char one_byte_reader(char r, char rh);

void data_disp(void);

void clear_select(void);

void clear_finish(void);

void data_select(void);

int read_total(void);

#endif /* PROTOTYPES_H */

2. <global_variable.h>

/*

 * File: global_variable.h

 * Author: Chen

 *

 * Created on February 24, 2019, 9:51 PM

 */

#include <xc.h>

#include <stdio.h>

#include <stdbool.h>

70

#ifndef GLOBAL_VARIABLE_H

#defineGLOBAL_VARIABLE_H

#ifdef __cplusplus

extern "C" {

#endif

#ifdef __cplusplus

}

#endif

//RTC variables/////

unsigned char happynewyear[7] = {//current local time, for initializing RTC

 0x20, // 20 Seconds

 0x20, // 20 Minutes

 0x20, // 24 hour mode, set to 20:00

 0x03, // Wednesday

 0x03, // 03st

 0x19, // 2019

 0x04, // April

};

unsigned char time[7] = {//declare the data type of real-time array

 0x45, // 45 Seconds

 0x59, // 59 Minutes

 0x23, // 24 hour mode, set to 23:00

 0x00, // Sunday

 0x31, // 31st

71

 0x12, // December

 0x18 // 2018

};

//"transition variables" that will be computed and then used as inputs in the robot main operating

routine///////

float rotary_counter=0;//instant number of ticks traveled

float turns_counter=0;// instant number of cycles traveled

float rotary_accum = 0;// total number of ticks traveled in the straight line

float accum_straight_distance=0;// total number of cycles traveled in the straight line

long start_sec=0;// real start time converted to second form

long end_sec=0;// real current time converted to second form

long operation_sec=0;// time difference between start_sec and end_sec in the unit of seconds

unsigned int a = 0;//left detection sensor reading

unsigned int b = 0;//middle detection sensor reading

unsigned int c = 0;//right detection sensor reading

float last_problem_bool[2] = {0,0};//last dispense information: {'crack' -> 0 or 'hole' -> 1,

distance from the start line}

bool completion_bool = true;// switch of standby or running

int last_sensed = 0; //1-crack, 2-hole, 0-none identified yet

float drop_position[12] = {0,0,0,0,0,0,0,0,0,0,0,0};//a queue of next positions that the robot

supposes to stop and dispense cones

int drop_identity[12] = {0,0,0,0,0,0,0,0,0,0,0,0};//identity of the obstacle the cone(s) should

cover: 0-none, 1-left crack,2-middle crack,3-right crack,4-hole

int drop_index = 0;//pointer to the next drop task in the drop queue

int add_index = 0;//where to add the new drop task in the drop queue

bool last_dropped = false;//last obstacle has/will have cone(s) deployed

72

bool no_cone = false;//switch of dispense functions

char times[8] = "00000000";//temporary list of start time(hours and minutes) of four latest

operations

//"record variables" that will be sent to permanent log/////

int hole_counter =0;//number of holes detected

int crack_counter=0;//number of cracks detected

int array_holes_distance[12] = {0,0,0,0,0,0,0,0,0,0,0,0};//distance between each hole and the

start line

int array_cracks_distance[12] = {0,0,0,0,0,0,0,0,0,0,0,0};//distance between each crack and the

start line

char start_time[2] = "00";//minute, hour(24)

unsigned char operation_time[3]={1,2,3};//sec, min, hour(24)

unsigned int cones_deployed = 0;

//LCD display state variables/////

int disp_standby_page = 0;//level 1 rotating counter

int ddp = 0;//level 2 rotating counter

int reg =0;//level variable

int display_repeat = 0;//data selection page counter (rotates twice)

int clear_waiter = 3;//wait 3 iterations for user command to confirm clearing history

//constants and parameters/////

const char keys[] = "123A456B789C*0#D";//keypad array

const float car_length = 1.45;

const float mc_L = 0.2;//see usage

const float car_width = 0.45;

73

const float half_lane_width = 1.5;

const float lc_R = 0.1;//see usage

const float whole_distance = 15;//distance between destination and the start line

int wety_deg = 600;//delay time for indicator flag to rotate 180 degrees

int ninty_deg = 260;//delay time for indicator flag to rotate 90 degrees

//high-level program state switches//////

bool key = false;//switch of setup mode

int planB = 0;//switch between deployment strategies. 0-1: at plan A, 2-3 at plan B %4 every

RESTART make it plan A.

//EEPROM variables//////

char addr =0;//lower 8 bits of the address to write

char addrh = 0;//higher 8 bits of the address to write

char read_pntr = 0;//temporary variable for computing the right address to read a specific type of

data

int total_op =0;//total number of operations recorded in EEPROM

int print_data[13];//temporary display content

#endif /* GLOBAL_VARIABLE_H */

3. <configBits.h>

/**

 * @file

 * @author Tyler Gamvrelis

 *

 * Created on July 10, 2017, 10:54 AM

 *

74

 * @ingroup Config_18F4620

 */

#ifndef CONFIG_BITS_H

#define CONFIG_BITS_H

// CONFIG1H

#pragma config OSC = HS // Oscillator Selection bits (HS oscillator)

#pragma config FCMEN = OFF // Fail-Safe Clock Monitor Enable bit (Fail-Safe Clock

Monitor disabled)

#pragma config IESO = OFF // Internal/External Oscillator Switchover bit (Oscillator

Switchover mode disabled)

// CONFIG2L

#pragma config PWRT = OFF // Power-up Timer Enable bit (PWRT disabled)

#pragma config BOREN = SBORDIS // Brown-out Reset Enable bits (Brown-out Reset enabled

in hardware only (SBOREN is disabled))

#pragma config BORV = 3 // Brown Out Reset Voltage bits (Minimum setting)

// CONFIG2H

#pragma config WDT = OFF // Watchdog Timer Enable bit (WDT disabled (control is

placed on the SWDTEN bit))

#pragma config WDTPS = 32768 // Watchdog Timer Postscale Select bits (1:32768)

// CONFIG3H

#pragma config CCP2MX = PORTC // CCP2 MUX bit (CCP2 input/output is multiplexed with

RC1)

75

#pragma config PBADEN = ON // PORTB A/D Enable bit (PORTB<4:0> pins are

configured as analog input channels on Reset)

#pragma config LPT1OSC = OFF // Low-Power Timer1 Oscillator Enable bit (Timer1

configured for higher power operation)

#pragma config MCLRE = ON // MCLR Pin Enable bit (MCLR pin enabled; RE3 input pin

disabled)

// CONFIG4L

#pragma config STVREN = ON // Stack Full/Underflow Reset Enable bit (Stack

full/underflow will cause Reset)

#pragma config LVP = OFF // Single-Supply ICSP Enable bit (Single-Supply ICSP

disabled)

#pragma config XINST = OFF // Extended Instruction Set Enable bit (Instruction set

extension and Indexed Addressing mode disabled (Legacy mode))

// CONFIG5L

#pragma config CP0 = OFF // Code Protection bit (Block 0 (000800-003FFFh) not code-

protected)

#pragma config CP1 = OFF // Code Protection bit (Block 1 (004000-007FFFh) not code-

protected)

#pragma config CP2 = OFF // Code Protection bit (Block 2 (008000-00BFFFh) not code-

protected)

#pragma config CP3 = OFF // Code Protection bit (Block 3 (00C000-00FFFFh) not code-

protected)

// CONFIG5H

#pragma config CPB = OFF // Boot Block Code Protection bit (Boot block (000000-

0007FFh) not code-protected)

76

#pragma config CPD = OFF // Data EEPROM Code Protection bit (Data EEPROM code-

protected)

// CONFIG6L

#pragma config WRT0 = OFF // Write Protection bit (Block 0 (000800-003FFFh) not write-

protected)

#pragma config WRT1 = OFF // Write Protection bit (Block 1 (004000-007FFFh) not write-

protected)

#pragma config WRT2 = OFF // Write Protection bit (Block 2 (008000-00BFFFh) not write-

protected)

#pragma config WRT3 = OFF // Write Protection bit (Block 3 (00C000-00FFFFh) not write-

protected)

// CONFIG6H

#pragma config WRTC = OFF // Configuration Register Write Protection bit (Configuration

registers (300000-3000FFh) not write-protected)

#pragma config WRTB = OFF // Boot Block Write Protection bit (Boot Block (000000-

0007FFh) not write-protected)

#pragma config WRTD = OFF // Data EEPROM Write Protection bit (Data EEPROM not

write-protected)

// CONFIG7L

#pragma config EBTR0 = OFF // Table Read Protection bit (Block 0 (000800-003FFFh) not

protected from table reads executed in other blocks)

#pragma config EBTR1 = OFF // Table Read Protection bit (Block 1 (004000-007FFFh) not

protected from table reads executed in other blocks)

#pragma config EBTR2 = OFF // Table Read Protection bit (Block 2 (008000-00BFFFh) not

protected from table reads executed in other blocks)

77

#pragma config EBTR3 = OFF // Table Read Protection bit (Block 3 (00C000-00FFFFh) not

protected from table reads executed in other blocks)

// CONFIG7H

#pragma config EBTRB = OFF // Boot Block Table Read Protection bit (Boot Block

(000000-0007FFh) not protected from table reads executed in other blocks)

// #pragma config statements should precede project file includes.

// Use project enums instead of #define for ON and OFF.

#include <xc.h>

#define _XTAL_FREQ 10000000 // Define osc freq for use in delay macros

#endif /* CONFIG_BITS_H */

4. <I2C.h>

/**

 * @file

 * @author Michael Ding

 * @author Tyler Gamvrelis

 *

 * Created summer 2016

 *

 * @defgroup I2C

 * @brief I2C driver

 * @{

78

 */

#ifndef I2C_H

#define I2C_H

/********************************* Includes **********************************/

#include <xc.h>

#include "configBits.h"

/********************************** Macros ***********************************/

// These mean different things depending on the context, see "Understanding the

// I2C bus" by Texas Instruments for more details

#define ACK 0 /**< Acknowledge */

#define NACK 1 /**< Not acknowledge */

/************************ Public Function Prototypes *************************/

/**

 * @brief Initializes the MSSP module for I2C mode. All configuration register

 * bits are written to because operating in SPI mode could change them

 * @param clockFreq The frequency at which data is to be transferred via the

 * I2C bus

 * @note The argument is used to generate the baud rate according to the

 * formula clock = FOSC / (4 * (SSPADD + 1)). Because the argument

 * sets the 7 bits of control signals in the SSPADD register, the

 * following are the limitations on the value of clockFreq for

 * FOSC = 40 MHz: Minimum: 78125, Maximum: 10000000

79

 */

void I2C_Master_Init(const unsigned long clockFreq);

/**

 * @brief Initiates Start condition on SDA and SCL pins. Automatically cleared

 * by hardware

 */

void I2C_Master_Start(void);

/**

 * @brief Initiates Repeated Start condition on SDA and SCL pins. Automatically

 * cleared by hardware

 */

void I2C_Master_RepeatedStart(void);

/**

 * @brief Initiates Stop condition on SDA and SCL pins. Automatically cleared

 * by hardware

 */

void I2C_Master_Stop(void);

/** @brief Writes a byte to the slave device currently being addressed */

void I2C_Master_Write(unsigned byteToWrite);

/**

 * @brief Reads a byte from the slave device currently being addressed

80

 * @param ackBit The acknowledge bit

 * -# ackBit == 0 --> acknowledge bit sent; ready for next bit

 * -# ackBit == 1 --> no acknowledge bit (NACK); done reading data

 * @return The byte received

 */

unsigned char I2C_Master_Read(unsigned char ackBit);

/**

 * @}

 */

#endif /* I2C_H */

5. <lcd.h>

/**

 * @file

 * @author Michael Ding

 * @author Tyler Gamvrelis

 *

 * Created on August 12, 2016, 4:24 PM

 *

 * @defgroup CharacterLCD

 * @brief Driver for Hitachi HD44780-based character LCD

 * @{

 */

#ifndef LCD_H

81

#define LCD_H

/********************************* Includes **********************************/

#include <xc.h>

#include <stdio.h>

#include <stdbool.h>

#include "configBits.h"

/********************************** Macros ***********************************/

#define RS LATDbits.LATD2

#define E LATDbits.LATD3

/** @brief Clears both LCD lines */

#define lcd_clear(){\

 lcdInst(0x01);\

 __delay_ms(5);\

}

/** @brief Sets cursor position to start of first line */

#define lcd_home(){\

 lcdInst(0x80);\

 __delay_ms(2);\

}

/**

 * @brief Sets the cursor's position to a specific display data RAM (DDRAM)

82

 * address

 * @param addr The DDRAM address to move the cursor to (min: 0, max: 127)

 * @note The cursor will not be visible at all addresses

 */

#define lcd_set_ddram_addr(addr){\

 lcdInst(0x80 | addr);\

}

/**

 * @brief Backlight and cursor control

 * @param display_on Turns on the backlight if true, otherwise turns it off

 * @param cursor_on Turns on cursor if true, otherwise turns it off

 * @param blink_cursor Blinks the cursor if true, otherwise cursor is static

 */

#define lcd_display_control(\

 display_on,\

 cursor_on,\

 blink_cursor\

)\

{\

 lcdInst(\

 (unsigned char)(8 | (display_on << 2) | (cursor_on << 1) | blink_cursor)\

);\

}

/******************************** Constants **********************************/

83

// Display dimensions as seen in the real world (before you use these in your

// code, double-check that they match the size of your LCD)

extern const unsigned char LCD_SIZE_HORZ; /**< Number of visible columns */

extern const unsigned char LCD_SIZE_VERT; /**< Number of visible rows */

extern const unsigned char LCD_LINE1_ADDR; /**< Address of first line */

extern const unsigned char LCD_LINE2_ADDR; /**< Address of 2nd line */

extern const unsigned char LCD_LINE3_ADDR; /**< Address of 3rd line */

extern const unsigned char LCD_LINE4_ADDR; /**< Address of 4th line */

/******************************** Constants **********************************/

const unsigned char LCD_SIZE_HORZ = 16;

const unsigned char LCD_SIZE_VERT = 4;

const unsigned char LCD_LINE1_ADDR = 0;

const unsigned char LCD_LINE2_ADDR = 64;

const unsigned char LCD_LINE3_ADDR = 16;

const unsigned char LCD_LINE4_ADDR = 80;

/********************************** Types ************************************/

/** @brief The directions the display contents and cursor can be shifted */

typedef enum{

 LCD_SHIFT_LEFT = 0, /**< Left shift */

 LCD_SHIFT_RIGHT = 1 /**< Right shift */

}lcd_direction_e;

/************************ Public Function Prototypes *************************/

84

/**

 * @brief Sends a command to a display control register

 * @param data The command byte for the Hitachi controller

 */

void lcdInst(char data);

/** @brief Performs the initial setup of the LCD */

void initLCD(void);

/**

 * @brief Moves the cursor in a given direction by numChars characters

 * @param numChars The number of character positions by which the cursor is to

 * be moved (min: 0, max: 127)

 * @param direction The direction for which the shift is to occur

 */

void lcd_shift_cursor(unsigned char numChars, lcd_direction_e direction);

/**

 * @brief Shifts the display in a given direction by numChars characters

 * @param numChars The number of character positions by which the display

 * contents are to be shifted (min: 0, max: 127)

 * @param direction The direction for which the shift is to occur

 */

void lcd_shift_display(unsigned char numChars, lcd_direction_e direction);

/**

85

 * @brief Sends a character to the display for printing

 * @details The familiar C function printf internally calls a function named

 * "putch" (put character) whenever a character is to be written to

 * the screen. Here we have chosen to implement putch so that it

 * sends the character to the LCD, but you can choose to implement it

 * however you'd like (e.g. send the character over UART, etc.)

 * @param data The character (byte) to be displayed

 */

void putch(char data);

/**

 * @}

 */

#endif /* LCD_H */

6. <main.c>

#include <xc.h>

#include "configBits.h"

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

#include "I2C.h"

#include "lcd.h"

#include "global_variable.h"

#include "prototypes.h"

86

void main(void){

 configureports();

 initLCD();

 lcd_display_control(true, false, false);

 unsigned long ticks = 0;

 total_op = read_total();

 while(1){

 if(!key){

 a = PORTBbits.RB2;

 b = PORTBbits.RB3;

 c = PORTAbits.RA1;

 read_encoder();

 if ((completion_bool == false)&&((accum_straight_distance >=

whole_distance)||(operation_sec >= 170))){//continue to adjust time limit

 Stop();

 completion_return();

 }

 else if((no_cone == false)&&(completion_bool ==

false)&&(drop_identity[drop_index]!=0)&&(accum_straight_distance >=

drop_position[drop_index])){

 Stop();

 drop_function();

 }

 else if((completion_bool==false)&&(a+b+c > 0)){

 Stop();

 sensed_function_3();

87

 initmoving_disp();

 }

 else if(completion_bool == false){

 moving();

 if (ticks%1000 == 0){

 normal_updater();

 }

 }

 else if ((completion_bool == true)&&(ticks%3000 == 0)) {

 lcd_clear();

 if (reg == 0){

 standby_rotating();

 }

 else if ((reg == 10) ||(reg == 20)||(reg == 30)||(reg ==40)){

 data_select();

 if ((ddp ==0)&&(reg%10==0)){

 display_repeat +=1;

 }

 if (display_repeat > 1){

 lcd_clear();

 printf("Returning to");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("the Main Menu...");

 __delay_ms(500);

 display_repeat = 0;

 reg = 0;}

88

 }

 else if ((reg/10 > 0)&&(reg/10 < 5)&&(reg%10 > 0)){

 data_disp();

 reg = (reg/10)*10;

 display_repeat = 0;

 }

 else if (reg ==50){

 clear_select();

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("exit in %d sec",clear_waiter);

 clear_waiter = clear_waiter - 1;

 if (clear_waiter ==0){

 clear_waiter = 3;

 reg = 0;

 }

 }

 else if(reg ==51){

 clear_finish();

 reg =0;

 clear_waiter =3;

 }

 }

 ticks++;

 }

 else{//set up: adjust indicator flag position

 LATDbits.LATD0 = 1;

89

 LATDbits.LATD1 = 0;

 __delay_ms(1);

 LATDbits.LATD0 = 0;

 __delay_ms(0.8);

 }

 }

}

void configureports(void){

 //configure I/O pins

 TRISD = 0;//D0-D7 LCD display

 //D0 D1 = flag motor

 TRISBbits.RB4 = 1;//keypad

 TRISBbits.RB5 = 1;

 TRISBbits.RB6 = 1;

 TRISBbits.RB7 = 1;

 TRISBbits.RB1 = 1;

 TRISCbits.RC3 = 1;//RTC

 TRISCbits.RC4 = 1;

 TRISBbits.RB0 = 1;//encoder of wheels

 TRISBbits.RB2 = 1;//middle sensor 1

 TRISBbits.RB3 = 1;//middle sensor 2

 TRISAbits.RA1 = 1;//middle sensor 3

90

 TRISAbits.RA3 = 1;//cone weight sensor

 //outputs

 TRISAbits.RA4 = 0;//gate 1 servo

 TRISAbits.RA5 = 0;//gate 2 servo

 LATAbits.LATA4 = 0;

 LATAbits.LATA5 = 0;

 TRISEbits.RE0 = 1;//1st sensor

 TRISEbits.RE1 = 1;//2nd sensor

 TRISCbits.RC1 = 0;//wheel w/o encoder

 TRISCbits.RC2 = 0;//wheel w/o encoder

 TRISCbits.RC5 = 0;//wheel connected

 TRISCbits.RC6 = 0;//wheel connected

 TRISCbits.RC7 = 0;//wheel w/ encoder

 TRISCbits.RC0 = 0;//wheel w/ encoder

 LATC =0;

 LATD =0;

 // Set all A/D ports to digital (pg. 222)

 ADCON1 = 0b00001111;

 //enable all interrupts

 INT0IE = 1;

 INTEDG0 = 1;

91

 //INT2IE = 1;

 INT1IE = 1;

 ei();

}

void normal_updater(void){//regular time counter updater

 readRTC();

 end_sec = time[2]*3600+time[1]* 60 + time[0];

 operation_sec = end_sec - start_sec;

 operation_time[2] = operation_sec/3600;

 operation_time[1] = (operation_sec%3600)/60;

 operation_time[0] = (operation_sec%3600)%60;

 }

void completion_return(void){

 //communicate with the user about the state

 lcd_clear();

 printf("returning");

 //put down indicator flag

 if (last_sensed == 1){

 LATDbits.LATD0 = 0;

 LATDbits.LATD1 = 1;

 __delay_ms(ninty_deg);//90 deg

 LATDbits.LATD1 = 0;

 }

 else if(last_sensed == 2){

92

 LATDbits.LATD0 = 1;

 LATDbits.LATD1 = 0;

 __delay_ms(ninty_deg);//180 deg

 LATDbits.LATD0 = 0;

 }

 //initiate and prepare distance counter for returning

 INT0IF = 0;

 INT0IE = 1;//encoder input

 INTEDG0 = 1;

 turns_counter=0;

 rotary_counter=0;

 //Slide to the right

 while (turns_counter < (car_width/2 + half_lane_width)){

 R_I();

 }

 Stop();

 //Move backward

 turns_counter=0;

 rotary_counter=0;

 while (turns_counter < accum_straight_distance + 1.8){

 backw();

 }

 Stop();

 //Slide to the left

 turns_counter=0;

 rotary_counter=0;

93

 while (turns_counter < car_width/2 + half_lane_width){

 L_I();

 }

 Stop();

 //clear the counter

 turns_counter=0;

 rotary_counter=0;

 //switch off wheel encoder interrupt

 INT0IF = 0;

 INT0IE = 0;

 //sliding door close if it was open

 unsigned long tick = 0;

 if (no_cone == true){

 while(tick<60){//pwm period = 20ms, duty cycle = 2.5ms

 LATAbits.LATA5 = 1;

 __delay_ms(2.5);

 LATAbits.LATA5 = 0;

 __delay_ms(16.5);

 tick ++;

 __delay_ms(1);

 }

 tick = 0;

 }

 //update the final operation time

 readRTC();

 end_sec = time[2]*3600+time[1]* 60 + time[0];//convert to seconds for one-step subtraction

94

 operation_sec = end_sec - start_sec;

 operation_time[2] = operation_sec/3600;

 operation_time[1] = (operation_sec%3600)/60;

 operation_time[0] = (operation_sec%3600)%60;//convert back to hh,mm,ss format

 //write to permanent memory

 completion_write();

 //set global variables that re-direct the branch for next main loop

 completion_bool = true;

 disp_standby_page =0;

}

void initialize_func(void){

 //Restart time and distance counter

 readRTC();

 start_sec = time[2]*3600 + time[1]* 60 + time[0];

 start_time[1] = time[2];

 start_time[0] = time[1];

 operation_sec = 0;

 rotary_accum = 0;

 accum_straight_distance=0;

 turns_counter=0;

 rotary_counter=0;

 //Initialize record data variables

 cones_deployed=0;

 hole_counter = 0;

 crack_counter =0;

 //Initialize operational global variables

95

 last_sensed = 0;

 no_cone = false;

 drop_index = 0;

 add_index = 0;

 reg = 0;

 ddp = 0;

 last_dropped = false;

 last_problem_bool[0] = 0;

 last_problem_bool[1] = 0;

 //Clear global variables

 for (unsigned int g = 0;g<12;g++){

 array_holes_distance[g]= 0;//record data

 array_cracks_distance[g]=0;//record data

 drop_identity[g]=0;//operational global variables

 drop_position[g]=0;//operational global variables

 }

 //Enable encoder interrupt

 INT0IE = 1;

 INTEDG0 = 1;

 ei();

 initmoving_disp();//display "running"

 normal_updater();//start operation time counter

 completion_bool = false;//toggle case variable

}

7. <dispense.c>

96

#include <xc.h>

#include "configBits.h"

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

#include "lcd.h"

#include "global_variable.h"

#include "I2C.h"

#include "prototypes.h"

void drop_function(void){

 if (planB <2){

 if (drop_identity[drop_index] == 1){

 left_crack_drop();

 }

 else if(drop_identity[drop_index] == 2){

 middle_crack_drop();

 }

 else if(drop_identity[drop_index] == 3){

 right_crack_drop();

 }

 else if(drop_identity[drop_index] == 4){//or just else

 hole_dispense_function();

 }

97

 }

 else{

 hole_dispense_function();

 }

 drop_index+=1;

}

void hole_dispense_function(void){

 unsigned long tick = 0;

 if (PORTAbits.RA3 == 1){

 lcd_clear();

 printf("cone used up");

 while(tick<70){//gate 1 close

 LATAbits.LATA4 = 1;

 __delay_ms(1.2);

 LATAbits.LATA4 = 0;

 __delay_ms(17.8);

 //}

 tick ++;

 __delay_ms(1);

 }

 tick = 0;

 while(tick<60){//175//1.5//55 gate 2 open

 LATAbits.LATA5 = 1;

 __delay_ms(0.5);//1

98

 LATAbits.LATA5 = 0;

 __delay_ms(18.5);

 //}

 tick ++;

 __delay_ms(1);

 }

 tick =0;

 while(tick<70){//gate 1 open

 LATAbits.LATA4 = 1;

 __delay_ms(1.85);//1.9 = 85

 LATAbits.LATA4 = 0;

 __delay_ms(17.15); //17.1

 //}

 tick ++;

 __delay_ms(1);

 }

 tick = 0;

 __delay_ms(100);

 cones_deployed +=1;

 no_cone = true;

 }

 else{

 tick = 0;

99

 while(tick<70){//gate 1 close

 LATAbits.LATA4 = 1;

 __delay_ms(1.2);

 LATAbits.LATA4 = 0;

 __delay_ms(17.8);

 //}

 tick ++;

 __delay_ms(1);

 }

 tick = 0;

 /*lcd_clear();

 printf("gate 2 open");*/

 while(tick<60){

 LATAbits.LATA5 = 1;

 __delay_ms(0.5);//1

 LATAbits.LATA5 = 0;

 __delay_ms(18.5);

 //}

 tick ++;

 __delay_ms(1);

 }

100

 __delay_ms(100);

 tick = 0;

 /*lcd_clear();

 printf("gate 2 close");*/

 while(tick<60){

 LATAbits.LATA5 = 1;

 __delay_ms(2.5);

 LATAbits.LATA5 = 0;

 __delay_ms(16.5);

 //}

 tick ++;

 __delay_ms(1);

 }

 __delay_ms(100);

 tick = 0;

 /*lcd_clear();

 printf("gate 1 open");*/

 while(tick<70){

 LATAbits.LATA4 = 1;

 __delay_ms(1.85);

 LATAbits.LATA4 = 0;

 __delay_ms(17.15);

 tick ++;

101

 __delay_ms(1);

 }

 tick = 0;

 __delay_ms(100);

 cones_deployed +=1;

 }

}

void middle_crack_drop(void){

 turns_counter =0;

 rotary_counter = 0;

 float A = turns_counter;

 float B = turns_counter;

 while((B - A) < mc_L){

 L_I();

 B = turns_counter;

 }

 Stop();

 hole_dispense_function();

 //

 turns_counter =0;

 rotary_counter = 0;

 A = turns_counter;

 B = turns_counter;

 while((B - A) < car_width){

 R_I();

102

 B = turns_counter;

 }

 Stop();

 if(no_cone == false){

 hole_dispense_function();}

 //

 turns_counter =0;

 rotary_counter = 0;

 A = turns_counter;

 B = turns_counter;

 while((B - A) < car_width - mc_L){

 L_I();

 B = turns_counter;

 }

 Stop();

 turns_counter =0;

 rotary_counter = 0;

}

void left_crack_drop(void){

 turns_counter =0;

 rotary_counter = 0;

 float A = turns_counter;

 float B = turns_counter;

 while((B - A) < lc_R-0.05){

103

 R_I();

 B = turns_counter;

 }

 Stop();

 hole_dispense_function();

 //

 turns_counter =0;

 rotary_counter = 0;

 A = turns_counter;

 B = turns_counter;

 while((B - A) < car_width-0.05){

 L_I();

 B = turns_counter;

 }

 Stop();

 if(no_cone == false){

 hole_dispense_function();}

 //

 turns_counter =0;

 rotary_counter = 0;

 A = turns_counter;

 B = turns_counter;

 while((B - A) < car_width - lc_R){

 R_I();

 B = turns_counter;

 }

104

 Stop();

 turns_counter =0;

 rotary_counter = 0;

}

void right_crack_drop(void){

 turns_counter =0;

 rotary_counter = 0;

 float A = turns_counter;

 float B = turns_counter;

 while((B - A) < lc_R){

 L_I();

 B = turns_counter;

 }

 Stop();

 hole_dispense_function();

 //

 turns_counter =0;

 rotary_counter = 0;

 A = turns_counter;

 B = turns_counter;

 while((B - A) < car_width){

 R_I();

 B = turns_counter;

 }

 Stop();

105

 if(no_cone == false){

 hole_dispense_function();}

 //

 turns_counter =0;

 rotary_counter = 0;

 A = turns_counter;

 B = turns_counter;

 while((B - A) < car_width - lc_R){

 L_I();

 B = turns_counter;

 }

 Stop();

 turns_counter =0;

 rotary_counter = 0;

}

8. <display.c>

#include <xc.h>

#include "configBits.h"

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include "lcd.h"

#include "global_variable.h"

106

#include "I2C.h"

#include "prototypes.h"

void data_disp(void){

 read_pointer();

 //compute the start of the requested data

 int datalength = 0;

 if(reg%10 == 1){//ot

 read_pntr = (total_op +1 - reg/10)*56 - 4 + 2;

 datalength = 3;}

 else if (reg%10 == 2){//cones

 read_pntr = (total_op +1- reg/10)*56 - 7 + 2;

 datalength = 1;}

 else if (reg%10 == 3){//hole

 read_pntr = (total_op +1- reg/10)*56 - 8 + 2;

 datalength = 25;}

 else if (reg%10 == 4){//crack

 read_pntr = (total_op +1- reg/10)*56 - 33 + 2;

 datalength = 25;}

 subtract();

 if (datalength == 25){

 print_data[0]= one_byte_reader(addr,addrh);

 addr +=1;

 if (addr == 0){

 addrh+=1;

107

 }

 int temp_read = 0;

 for (int length_i = 1;length_i<datalength;length_i++){

 if (length_i%2 == 0){

 temp_read += one_byte_reader(addr,addrh);

 print_data[(length_i / 2)] = temp_read;

 temp_read = 0;

 }

 else{

 temp_read += 256 * one_byte_reader(addr,addrh);

 }

 addr +=1;

 if (addr == 0){

 addrh+=1;

 }

 }

 }

 else{

 for (int length_i = 0;length_i<datalength;length_i++){

 print_data[length_i]= one_byte_reader(addr,addrh);

 addr +=1;

 if (addr == 0){

 addrh+=1;

 }

 }

 }

108

 if(reg%10 == 1){//ot

 ot(print_data);}

 else if (reg%10 == 2){//cones

 Cones(print_data);}

 else if (reg%10 == 3){//hole

 Holes2(print_data,print_data[0]);}

 else if (reg%10 == 4){//crack

 Cracks(print_data,print_data[0]);}

}

void ot(unsigned int* print_data){

 printf("Operation Time:");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("%02d hour",print_data[0]);

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("%02d min",print_data[1]);

 lcd_set_ddram_addr(LCD_LINE4_ADDR);

 printf("%02d sec",print_data[2]);

 __delay_ms(2000);

}

void Cones(unsigned int* print_data){

 printf("Number of Cones");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Deployed:");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("%d",print_data[0]);

109

 __delay_ms(2000);

}

void Holes2(unsigned int* a,int b){

 printf("Number of Holes");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Detected:");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("%d",a[0]);

 __delay_ms(2000);

 //Distance from Start Line: (cm)

 printintarray2(a,b);

}

void Cracks(unsigned int* a,int b){

 printf("Number of Cracks");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Detected:");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("%d",a[0]);

 __delay_ms(2000);

 //Distance from Start Line: (cm)

 printintarray2(a,b);

}

110

void page5(void){

 unsigned char curr_line = LCD_LINE1_ADDR;

 for (int op_counter = 0;op_counter < total_op;op_counter++){

 printf("#%d.",op_counter+1);

 read_pntr = (total_op - op_counter)*56;//latest is the first

 read_pointer();

 subtract();//correct

 times[op_counter*2] = one_byte_reader(addr,addrh);

 addr +=1;

 if (addr == 0){

 addrh+=1;

 }

 times[op_counter*2+1] = one_byte_reader(addr,addrh);

 if (times[op_counter*2] >= 12){

 times[op_counter*2] = times[op_counter*2] - 12;

 printf("%d:%02d pm",times[op_counter*2],times[op_counter*2+1]);

 }

 else{

 printf("%d:%02d am",times[op_counter*2],times[op_counter*2+1]);

 }

 curr_line = nextLine(curr_line);

 lcd_set_ddram_addr(curr_line);

 }

}

///

111

void clear_select(void){

 printf("Clear?");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("C: confirm");

}

void clear_finish(void){

 clear_mem();

 printf("History Cleared");

}

void data_select(void){

 if (ddp == 0){

 data1();

 }

 else if (ddp ==1){

 data2();

 }

 else if (ddp ==2){

 data3();

 }

 else if (ddp ==3){

 data4();

 }

112

 ddp = (ddp+1)%4;

}

void standby_rotating(void){

 if (disp_standby_page == 0){

 page1();

 }

 else if (disp_standby_page ==1){

 page2();

 }

 else if (disp_standby_page ==2){

 page3();

 }

 else if (disp_standby_page ==3){

 page4();

 }

 else if (disp_standby_page ==4){

 if (total_op == 0){

 page3();

 }

 else{

 page5();}

 }else if (disp_standby_page ==5){

 page6();

 }

113

 disp_standby_page = (disp_standby_page+1)%6;

}

unsigned int digit0(unsigned int h){

 if (h<10){

 return 1;}

 else if (h<100){

 return 2;}

 else if (h<1000){

 return 3;}

 else if (h<10000){

 return 4;

 }

 else{

 return 0;}

}

unsigned char nextLine(unsigned char g){

 if (g == LCD_LINE1_ADDR){

 return LCD_LINE2_ADDR;

 }

 else if (g ==LCD_LINE2_ADDR){

 return LCD_LINE3_ADDR;

 }

 else if (g == LCD_LINE3_ADDR){

 return LCD_LINE4_ADDR;

 }

 else if (g == LCD_LINE4_ADDR){

114

 return LCD_LINE1_ADDR;

 }

}

//display in necessary digits, display one page one time.

void printintarray2(unsigned int* a,int b){

 unsigned char curr_line = LCD_LINE3_ADDR;

 unsigned int dig =0;

 unsigned int counter =0;

 unsigned int left =16;

 lcd_clear();

 printf("Distance from");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Start Line: (cm)");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 __delay_ms(200);

 for(unsigned int i = 1;i<b+1;i++){//change

 dig = digit0(a[i]);

 counter = counter + 1 + dig;

 if (counter <= 16){

 printf(" ");

 printf("%d",a[i]);

 left = 16-counter;

 }

115

 else if (counter > 16){

 curr_line = nextLine(curr_line);

 if (curr_line == LCD_LINE1_ADDR){

 __delay_ms(3000);

 lcd_clear();}

 lcd_set_ddram_addr(curr_line);

 printf(" ");

 printf("%d",a[i]);

 counter = counter - 16 + left;

 left = 16-counter;

 }

 }

 __delay_ms(3000);

}

void page1(void){

 printf("Thanks for using ");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Traffic Cone");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("Dispenser");

}

void page3(void){

 readRTC();

 printf("Date");

116

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("20");

 printf("%02d-%02d-%02d",time[6],time[5],time[4]);

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("Time");

 lcd_set_ddram_addr(LCD_LINE4_ADDR);

 printf("%02d:%02d:%02d",time[2],time[1],time[0]);

}

void page2(void){

 printf("Press A:");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Start a New");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("Operation");

}

void page6(void){

 printf("Press 0:");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Clear History");

}

void page4(void){

 printf("Past Operations:");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 total_op = read_total();

 if (total_op == 0){

117

 printf(" Empty");

 }

 else if (total_op == 1){

 printf("Choose 1");

 }

 else{

 printf("Choose 1 - %d",total_op);}

 //lcd_set_ddram_addr(LCD_LINE3_ADDR);

 //printf("");

}

void data1(void){

 printf("Press 1:");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Operation Time");

}

void data2(void){

 printf("Press 2:");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Number of");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("Cones Deployed");

}

118

void data3(void){

 printf("Press 3:");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Number and ");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("Location of ");

 lcd_set_ddram_addr(LCD_LINE4_ADDR);

 printf("Holes Detected");

}

void data4(void){

 printf("Press 4:");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Number and ");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("Location of ");

 lcd_set_ddram_addr(LCD_LINE4_ADDR);

 printf("Cracks Detected");

}

void initmoving_disp(void){

 lcd_clear();

 printf("Running");

}

//old alternatives methods

//delay all in three digits, one page one time

119

/*void printintarray1(int* a,int b){

 unsigned char curr_line = LCD_LINE3_ADDR;

 unsigned int counter=0;

 lcd_clear();

 printf("Distance from");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Start Line: (cm)");

 __delay_ms(500);

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 for(unsigned int i=0;i<b;i++){

 printf("%03d",a[i]);

 printf(" ");

 counter+=1;

 if ((curr_line == LCD_LINE4_ADDR)&&(counter%4 == 0)){

 __delay_ms(3000);

 lcd_clear();

 }

 if (counter%4==0){

 curr_line = nextLine(curr_line);

 lcd_set_ddram_addr(curr_line);

 }

 }

 __delay_ms(3000);

 }*/

120

/*void Holes(int* a,int b){

 //number of Holes Detected

 unsigned char hole[] = "8";

 lcd_clear();

 printf("Number of Holes");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Detected:");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("%s",hole);

 __delay_ms(2000);

 //Distance from Start Line: (cm)

 printintarray3(a,b);

}

void Holes1(int* a,int b){

 //number of Holes Detected

 unsigned char hole[] = "8";

 lcd_clear();

121

 printf("Number of Holes");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Detected:");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("%s",hole);

 __delay_ms(2000);

 //Distance from Start Line: (cm)

 printintarray1(a,b);

}*/

/*// display in necessary digits, display one by one, clear one line by one line

void printintarray3(int* a,int b){

 unsigned char curr_line = LCD_LINE3_ADDR;

 unsigned int dig =0;

 unsigned int counter =0;

 unsigned int left =16;

 lcd_clear();

 printf("Distance from");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("Start Line: (cm)");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 __delay_ms(500);

 //printf("size of a");

122

 //printf("%d",sizeof(a)); /fixed by b;

 for(unsigned int i = 0;i<b;i++){

 dig = digit0(a[i]);

 counter = counter + 1 + dig;

 if (counter <=16){

 printf(" ");

 printf("%d",a[i]);

 left = 16-counter;

 }

 else if (counter > 16){

 curr_line = nextLine(curr_line);

 lcd_set_ddram_addr(curr_line);

 printf(" ");

 __delay_ms(500);

 lcd_set_ddram_addr(curr_line);

 printf(" ");

 printf("%d",a[i]);

 counter = counter - 16 + left;

 left = 16-counter;

 }

 //printf("%u",counter);

 //printf("%d",curr_line);

 __delay_ms(1000);

 }

 __delay_ms(2000);

}*/

123

/*

void sensingH(void){

//sensed, hole

 lcd_clear();

 //while(1){

 lcd_set_ddram_addr(LCD_LINE1_ADDR);

 printf("Detected: Hole");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf(" Operating");

 //__delay_ms(500);

 //}

}

void sensingC(void){

//sensed, crack

 lcd_clear();

 //while(1){

 lcd_set_ddram_addr(LCD_LINE1_ADDR);

 printf("Detected: Crack");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

124

 printf(" Operating");

}

*/

9.<EEPROM.c>

#include <xc.h>

#include "configBits.h"

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

#include "lcd.h"

#include "global_variable.h"

#include "I2C.h"

#include "prototypes.h"

void clear_mem(void){

//set first two data to 02.

 read_pointer();

 while (1){

 EEADRH = addrh;

 EEADR = addr;

 EEDATA = 0;

 EECON1bits.EEPGD = 0;

 EECON1bits.CFGS = 0;

125

 EECON1bits.WREN = 1;

 GIE =0;

 EECON2 = 0x55;

 EECON2 = 0xAA;

 EECON1bits.WR =1;

 while(EECON1bits.WR==1){

 }//wait writing to complete

 GIE =1;

 EECON1bits.WREN = 0;

 addr = addr-1;

 if (addr == 0xFF){

 addrh = addrh -1;

 }

 if (addrh == 0xFF){

 break;

 }

 }

 EEADRH = 0;

 EEADR = 0;

 EEDATA = 0;

126

 EECON1bits.EEPGD = 0;

 EECON1bits.CFGS = 0;

 EECON1bits.WREN = 1;

 GIE =0;

 EECON2 = 0x55;

 EECON2 = 0xAA;

 EECON1bits.WR =1;

 while(EECON1bits.WR==1){

 }//wait writing to complete

 GIE =1;

 EECON1bits.WREN = 0;

 EEADRH = 0;

 EEADR = 1;

 EEDATA = 2;

 EECON1bits.EEPGD = 0;

 EECON1bits.CFGS = 0;

 EECON1bits.WREN = 1;

 GIE =0;

 EECON2 = 0x55;

 EECON2 = 0xAA;

127

 EECON1bits.WR =1;

 while(EECON1bits.WR==1){

 }//wait writing to complete

 GIE =1;

 EECON1bits.WREN = 0;

}

void completion_write(void){

 read_pointer();

 int value = 0;

 while(value <56){

 EEADRH = addrh;

 EEADR = addr;

 if (value <2){

 EEDATA = start_time[1-value];}

 else if (value <5){

 EEDATA = operation_time[4-value];}

 else if (value == 5){

 EEDATA = cones_deployed;}

128

 else if (value == 6){

 EEDATA = hole_counter;}

 else if ((value <31)&&(value%2 == 1)){

 EEDATA = array_holes_distance[(value-7)/2]/256;}

 else if ((value <31)&&(value%2 == 0)){

 EEDATA = array_holes_distance[(value-8)/2]%256;}

 else if (value == 31){

 EEDATA = crack_counter;}

 else if ((value <56)&&(value%2 == 0)){

 EEDATA = array_cracks_distance[(value-32)/2]/256;

 }

 else if ((value <56)&&(value%2 == 1)){

 EEDATA = array_cracks_distance[(value-33)/2]%256;

 }

 EECON1bits.EEPGD = 0;

 EECON1bits.CFGS = 0;

 EECON1bits.WREN = 1;

 GIE =0;

 EECON2 = 0x55;

 EECON2 = 0xAA;

 EECON1bits.WR =1;

 while(EECON1bits.WR==1){

129

 }

 GIE =1;

 EECON1bits.WREN = 0;

 addr +=1;

 if (addr == 0){

 addrh+=1;

 }

 if (addrh == 0x03){//actually not complete since it will not be here

 //EECON1bits.WREN =0;

 printf("memory full");

 break;

 }

 value +=1;

 }

 update_pointer();

}

void update_pointer(void){

 EEADRH = 0;

 EEADR = 0;

 EEDATA = addrh;

 EECON1bits.EEPGD = 0;

130

 EECON1bits.CFGS = 0;

 EECON1bits.WREN = 1;

 GIE = 0;

 EECON2 = 0x55;

 EECON2 = 0xAA;

 EECON1bits.WR =1;

 while(EECON1bits.WR==1){

 }

 GIE =1;

 EECON1bits.WREN = 0;

 ///////////////////////////////////

 EEADRH = 0;

 EEADR = 1;

 EEDATA = addr;

 EECON1bits.EEPGD = 0;

 EECON1bits.CFGS = 0;

 EECON1bits.WREN = 1;

 GIE = 0;

 EECON2 = 0x55;

131

 EECON2 = 0xAA;

 EECON1bits.WR =1;

 while(EECON1bits.WR==1){

 }//wait writing to complete

 GIE =1;

 EECON1bits.WREN = 0;

}

void read_pointer(void){

 EECON1bits.EEPGD = 0;

 EECON1bits.CFGS = 0;

 EEADRH = 0;

 EEADR = 0;

 EECON1bits.RD = 1;

 addrh = EEDATA;

 EECON1bits.EEPGD = 0;

 EECON1bits.CFGS = 0;

 EEADRH = 0;

 EEADR = 1;

132

 EECON1bits.RD = 1;

 addr = EEDATA;

}

void subtract(void){

 if (addr >= read_pntr){

 addr = addr - read_pntr;}

 else{

 addrh = addrh - 1;

 addr = addr - read_pntr;}

}

char one_byte_reader(char r, char rh){

 EECON1bits.EEPGD = 0;

 EECON1bits.CFGS = 0;

 EEADRH = rh;

 EEADR = r;

 EECON1bits.RD = 1;

 char out= EEDATA;

 return out;

}

int read_total(void){

 read_pointer();

 /*printf(",%d,%d,",addrh,addr);

133

 __delay_ms(1000);*/

 int total = ((addrh*256 + addr)-2)/56;

 /*printf("%d",total);

 __delay_ms(1000);*/

 if (total > 4){

 total = 4;

 }

 return total;

}

10. <encoder_motor.c>

#include <xc.h>

#include "configBits.h"

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

#include "lcd.h"

#include "global_variable.h"

#include "I2C.h"

#include "prototypes.h"

void read_encoder(void){

 rotary_accum+=rotary_counter;

 accum_straight_distance= rotary_accum / 334;

 turns_counter = 0;

134

 rotary_counter = 0;

}

void moving(void){

 if ((PORTEbits.RE0 && PORTEbits.RE1) ==1){

 straight();

 }

 if(PORTEbits.RE1 ==0){

 turn_left();

 }

 else if (PORTEbits.RE0 ==0){

 turn_right();

 }

}

void straight(void){

 LATCbits.LATC5 = 0;

 LATCbits.LATC1 = 0;

 LATCbits.LATC7 = 0;

 LATCbits.LATC2 = 1;

 LATCbits.LATC6 = 1;

 LATCbits.LATC0 = 1;

 __delay_ms(7);

 LATCbits.LATC2 = 0;

 LATCbits.LATC6 = 1;

 LATCbits.LATC0 = 1;

135

 __delay_ms(1);

 LATCbits.LATC2 = 0;

 LATCbits.LATC6 = 0;

 LATCbits.LATC0 = 0;

 __delay_ms(2.5);

}

void turn_left(void){//10ms

 LATCbits.LATC5 = 0;

 LATCbits.LATC1 = 0;

 LATCbits.LATC7 = 0;

 LATCbits.LATC2 = 1;

 LATCbits.LATC6 = 1;

 LATCbits.LATC0 = 1;

 __delay_ms(8);

 LATCbits.LATC2 = 1;

 LATCbits.LATC6 = 0;

 LATCbits.LATC0 = 0;

 __delay_ms(1);

 LATCbits.LATC2 = 0;

 LATCbits.LATC6 = 0;

 LATCbits.LATC0 = 0;

 __delay_ms(1.5);

}

void turn_right(void){//10ms 8 1 1

 LATCbits.LATC5 = 0;

136

 LATCbits.LATC1 = 0;

 LATCbits.LATC7 = 0;

 LATCbits.LATC2 = 1;

 LATCbits.LATC6 = 1;

 LATCbits.LATC0 = 1;

 __delay_ms(5);

 LATCbits.LATC2 = 0;

 LATCbits.LATC6 = 1;

 LATCbits.LATC0 = 1;

 __delay_ms(4);

 LATCbits.LATC2 = 0;

 LATCbits.LATC6 = 0;

 LATCbits.LATC0 = 0;

 __delay_ms(1.5);

}

void L_I(void){

 LATCbits.LATC6 = 0;

 LATCbits.LATC1 = 0;

 LATCbits.LATC7 = 0;

 LATCbits.LATC0 = 1;

 LATCbits.LATC5 = 1;

 LATCbits.LATC2 = 1;

 __delay_ms(4.5);

137

 LATCbits.LATC5 = 0;

 __delay_ms(1);

 LATCbits.LATC0 = 1;

 LATCbits.LATC2 = 0;

 __delay_us(700);

}

void Stop(void){

 LATCbits.LATC6 = 0;

 LATCbits.LATC1 = 0;

 LATCbits.LATC7 = 0;

 LATCbits.LATC0 = 0;

 LATCbits.LATC5 = 0;

 LATCbits.LATC2 = 0;

}

void R_I(void){

 LATCbits.LATC0 = 0;

 LATCbits.LATC5 = 0;

 LATCbits.LATC2 = 0;

 LATCbits.LATC6 = 1;

 LATCbits.LATC1 = 1;

 LATCbits.LATC7 = 1;

 __delay_ms(5);

 LATCbits.LATC6 = 0;

 LATCbits.LATC1 = 0;

 __delay_ms(1.2);

138

 LATCbits.LATC1 = 1;

 __delay_ms(0.5);

 LATCbits.LATC6 = 0;

 LATCbits.LATC1 = 0;

 LATCbits.LATC7 = 1;

 __delay_us(700);

}

void backw(void){

 LATCbits.LATC6 = 0;

 LATCbits.LATC2 = 0;

 LATCbits.LATC0 = 0;

 LATCbits.LATC1 = 1;

 LATCbits.LATC5 = 1;

 LATCbits.LATC7 = 1;

 __delay_us(100);

}

11.<I2C.c>

/**

 * @file

 * @author Michael Ding

 * @author Tyler Gamvrelis

 *

 * Created on August 4, 2016, 3:22 PM

 *

 * @ingroup I2C

139

 */

/********************************* Includes **********************************/

#include "I2C.h"

/***************************** Private Functions *****************************/

/**

 * @brief Private function used to poll the MSSP module status. This function

 * exits when the I2C module is idle.

 * @details The static keyword makes it so that files besides I2C.c cannot

 * "see" this function

 */

static inline void I2C_Master_Wait(){

 // Wait while:

 // 1. A transmit is in progress (SSPSTAT & 0x04)

 // 2. A Start/Repeated Start/Stop/Acknowledge sequence has not yet been

 // cleared by hardware

 while ((SSPSTAT & 0x04) || (SSPCON2 & 0x1F)){

 continue;

 }

}

/***************************** Public Functions ******************************/

void I2C_Master_Init(const unsigned long clockFreq){

 // Disable the MSSP module

 SSPCON1bits.SSPEN = 0;

140

 // Force data and clock pin data directions

 TRISCbits.TRISC3 = 1; // SCL (clock) pin

 TRISCbits.TRISC4 = 1; // SDA (data) pin

 // See section 17.4.6 in the PIC18F4620 datasheet for master mode details.

 // Below, the baud rate is configured by writing to the SSPADD<6:0>

 // according to the formula given on page 172

 SSPADD = (_XTAL_FREQ / (4 * clockFreq)) - 1;

 // See PIC18F4620 datasheet, section 17.4 for I2C configuration

 SSPSTAT = 0b10000000; // Disable slew rate control for cleaner signals

 // Clear errors & enable the serial port in master mode

 SSPCON1 = 0b00101000;

 // Set entire I2C operation to idle

 SSPCON2 = 0b00000000;

}

void I2C_Master_Start(void){

 I2C_Master_Wait(); // Ensure I2C module is idle

 SSPCON2bits.SEN = 1; // Initiate Start condition

}

void I2C_Master_RepeatedStart(void){

141

 I2C_Master_Wait(); // Ensure I2C module is idle

 SSPCON2bits.RSEN = 1; // Initiate Repeated Start condition

}

void I2C_Master_Stop(void){

 I2C_Master_Wait(); // Ensure I2C module is idle

 SSPCON2bits.PEN = 1; // Initiate Stop condition

}

void I2C_Master_Write(unsigned byteToWrite){

 I2C_Master_Wait(); // Ensure I2C module is idle

 // Write byte to the serial port buffer for transmission

 SSPBUF = byteToWrite;

}

unsigned char I2C_Master_Read(unsigned char ackBit){

 I2C_Master_Wait(); // Ensure I2C module is idle

 SSPCON2bits.RCEN = 1; // Enable receive mode for I2C module

 I2C_Master_Wait(); // Wait until receive buffer is full

 // Read received byte from the serial port buffer

 unsigned char receivedByte = SSPBUF;

 I2C_Master_Wait(); // Ensure I2C module is idle

142

 SSPCON2bits.ACKDT = ackBit; // Acknowledge data bit

 SSPCON2bits.ACKEN = 1; // Initiate acknowledge bit transmission sequence

 return receivedByte;

}

12.<interrupt handler.c>

#include <xc.h>

#include "configBits.h"

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

#include "lcd.h"

#include "global_variable.h"

#include "I2C.h"

#include "prototypes.h"

void high_priority interrupt interruptHandler(void){

 // Interrupt on change handler for RB1

 if(INT1IF){

 // Notice how we keep the interrupt processing very short by simply

 // setting a "flag" which the main program loop checks

 INT1IF = 0; // Clear interrupt flag bit to signify it's been handled

 char keypress = (PORTB & 0xF0) >> 4;

 char command = keys[keypress];

 //lcd_clear();

143

 //0-4 :48 49 50 51 52;

 if((command == '1') ||(command == '2')||(command == '3')||(command =='4')){

 if (reg == 0){

 if ((command - 48) > total_op){

 lcd_clear();

 printf("Oops. I don't get");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("it... Please");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("Review the Menu.");

 __delay_ms(500);

 }

 else{

 reg = (command - 48)*10;

 display_repeat = 0;}

 }

 else if ((reg == 10)||(reg == 20)||(reg == 30)||(reg == 40)){

 reg = reg + command - 48;

 }

 }

 else if (command == 48){

 if (reg == 0){

 reg =50;

 }

144

 }

 else if (command == 'C'){

 if(reg == 50){

 reg = 51;

 clear_waiter = 3;

 }

 }

 else if(command =='A'){//start command

 initialize_func();

 }

 else if(command == 'D'){

 key = !key;

 LATDbits.LATD0 = 0;

 LATDbits.LATD1 = 0;

 }

 else if (command == 'B'){

 lcd_clear();

 planB +=1;

 planB = planB%4;

 if (planB%4 == 1){

 printf("planB?");

 }//pressed once

 else if (planB%4 == 2){

 printf("planB set");

145

 }

 else if (planB%4 == 3){

 printf("planA?");

 }

 else if (planB%4 == 0){

 printf("planA set");

 }

 __delay_ms(800);

 }

 else{

 if (reg == 50){

 reg = 0;

 }

 else{

 lcd_clear();

 printf("Oops. I don't get");

 lcd_set_ddram_addr(LCD_LINE2_ADDR);

 printf("it... Please");

 lcd_set_ddram_addr(LCD_LINE3_ADDR);

 printf("Review the Menu.");

 __delay_ms(500);

 }

 }

146

 }

 else if(INT0IF){

 int b0 = PORTBbits.RB0;

 if (b0==1){//read high inputs

 rotary_counter +=1;

 turns_counter = rotary_counter / 334;

 }

 INT0IF= 0;

 }

}

13.<lcd.c>

/**

 * @file

 * @author Michael Ding

 * @author Tyler Gamvrelis

 *

 * Created on July 18, 2016, 12:11 PM

 * @ingroup CharacterLCD

 */

/********************************* Includes **********************************/

#include "lcd.h"

/***************************** Private Functions *****************************/

/**

147

 * @brief Pulses the LCD register enable signal, which causes the LCD to latch

 * the data on LATD. Interrupts are disabled during this pulse to

 * guarantee that the timing requirements of the LCD's protocol are met

 */

static inline void pulse_e(void){

 unsigned char interruptState = INTCONbits.GIE;

 di();

 E = 1;

 // This first delay only needs to be 1 microsecond in theory, but 25 was

 // selected experimentally to be safe

 __delay_us(25);

 E = 0;

 __delay_us(100);

 INTCONbits.GIE = interruptState;

}

/**

 * @brief Low-level function to send 4 bits to the display

 * @param data The byte whose 4 least-significant bits are to be sent to the LCD

 */

static void send_nibble(unsigned char data){

 // Send the 4 least-significant bits

 LATD = (unsigned char)(LATD & 0x0F); // Clear LATD[7:4]

 LATD = (unsigned char)((data << 4) | LATD); // Write data[3:0] to LATD[7:4]

 pulse_e();

}

148

/**

 * @brief Low-level function to send a byte to the display

 * @param data The byte to be sent

 */

static void send_byte(unsigned char data){

 // Send the 4 most-significant bits

 send_nibble(data >> 4);

 // Send the 4 least-significant bits

 send_nibble(data);

}

/***************************** Public Functions ******************************/

void lcdInst(char data){

 RS = 0;

 send_byte(data);

}

void initLCD(void){

 __delay_ms(15);

 RS = 0;

 // Set interface length to 4 bits wide

 send_nibble(0b0011);

 __delay_ms(5);

149

 send_nibble(0b0011);

 __delay_us(150);

 send_byte(0b00110010);

 send_byte(0b00101000); // Set N = number of lines (1 or 2) and F = font

 send_byte(0b00001000); // Display off

 send_byte(0b00000001); // Display clear

 __delay_ms(5);

 send_byte(0b00000110); // Entry mode set

 // Enforce on: display, cursor, and cursor blinking

 lcd_display_control(true, true, true);

}

void lcd_shift_cursor(unsigned char numChars, lcd_direction_e direction){

 for(unsigned char n = numChars; n > 0; n--){

 lcdInst((unsigned char)(0x10 | (direction << 2)));

 }

}

void lcd_shift_display(unsigned char numChars, lcd_direction_e direction){

 for(unsigned char n = numChars; n > 0; n--){

 lcdInst((unsigned char)(0x18 | (direction << 2)));

 }

}

150

void putch(char data){

 RS = 1;

 send_byte((unsigned char)data);

}

14.<RTC.c>

#include <xc.h>

#include "configBits.h"

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

#include "lcd.h"

#include "global_variable.h"

#include "I2C.h"

#include "prototypes.h"

void readRTC(void){

 I2C_Master_Init(100000);

 // Reset RTC memory pointer

 I2C_Master_Start(); // Start condition

 I2C_Master_Write(0b11010000); // 7 bit RTC address + Write

 I2C_Master_Write(0x00); // Set memory pointer to seconds

 I2C_Master_Stop(); // Stop condition

 // Read current time

 char t_data = 0;

151

 I2C_Master_Start(); // Start condition

 I2C_Master_Write(0b11010001); // 7 bit RTC address + Read

 for(unsigned char i = 0; i < 6; i++){

 t_data = I2C_Master_Read(ACK);

 time[i] = (t_data>>4)*10+(t_data&0x0F);

 }

 t_data = I2C_Master_Read(NACK);

 time[6] = (t_data>>4)*10+(t_data&0x0F); // Final Read with NACK

 I2C_Master_Stop(); // Stop condition

}

void rtc_set_time(void){

 I2C_Master_Start(); // Start condition

 I2C_Master_Write(0b11010000); //7 bit RTC address + Write

 I2C_Master_Write(0x00); // Set memory pointer to seconds

 // Write array

 for(char i=0; i < 7; i++){

 I2C_Master_Write(happynewyear[i]);

 }

 I2C_Master_Stop(); //Stop condition

}

15.<sensor.c>

#include <xc.h>

#include "configBits.h"

152

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

#include "lcd.h"

#include "global_variable.h"

#include "I2C.h"

#include "prototypes.h"

int hole_drop_bool_function(void){

 if (last_dropped == false){

 last_dropped = true;return 1;

 }

 else{

 float x = last_problem_bool[0];

 float y = last_problem_bool[1];

 //bool last_droped = false;or true

 //if false, drop

 //if true, decide.

 if (x + y ==0){

 last_dropped = true;return 1;

 }

 else if (last_problem_bool[0] == 1) {//hole

 if (accum_straight_distance - y >= 0.55){ // 15//unit in cm

 last_dropped = true;return 1;}

153

 else{

 last_dropped = false;

 return 0;}

 }

 else{

 if (accum_straight_distance - y >= 0.75){//20 ~ 0.75 cycles ish

 last_dropped = true;return 1;}

 else{last_dropped = false;return 0;}

 }

}

}

int crack_drop_bool_function(void){

 if (last_dropped == false){

 last_dropped = true;

 return 1;

 }

 else{

 float x = last_problem_bool[0];

 float y = last_problem_bool[1];

 if (x+y ==0){

 last_dropped = true;

 return 1;

 }

 else if (last_problem_bool[0] == 1) {//last is hole

 if (accum_straight_distance - y >= 0.75){ //unit in cm

154

 last_dropped = true;

 return 1;}

 else{

 last_dropped = false;

 return 0;}

 }

 else{

 if (accum_straight_distance - y >= 0.36){//10 ~ 0.5

 last_dropped = true;

 return 1;

 }

 else{last_dropped = false;return 0;

 }

 }

}

}

void drop_record(int aa){

 drop_identity[add_index] = aa;

 drop_position[add_index] = accum_straight_distance + car_length;

 add_index +=1;

 /*printf("hhhhh,%d,%.2f",aa,accum_straight_distance + car_length);

 __delay_ms(2000);*/

}

void sensed_function_3(void){

 read_encoder();

155

 if (a+c == 2){

 int sth = crack_drop_bool_function();

 if (sth){

 drop_record(2);

 //middle_crack_drop();

 last_problem_bool[0] = 0;

 last_problem_bool[1] = accum_straight_distance;

 }

 record('c');

 }

 else if (a == 1){

 /*printf("left crack");

 __delay_ms(2000);*/

 int sth = crack_drop_bool_function();

 if (sth){

 drop_record(1);

 //left_crack_drop();

 last_problem_bool[0] = 0;

 last_problem_bool[1] = accum_straight_distance;

 }

 record('c');

 }

 else if (c ==1){

 /*printf("right crack");

 __delay_ms(2000);*/

 int sth = crack_drop_bool_function();

156

 if (sth){

 drop_record(3);

 //right_crack_drop();

 last_problem_bool[0] = 0;

 last_problem_bool[1] = accum_straight_distance;

 }

 record('c');

 }

 else{

 /*printf("hole");

 __delay_ms(2000);*/

 int sth = hole_drop_bool_function();

 if (sth ==1){

 drop_record(4);

 //hole_dispense_function();

 last_problem_bool[0] = 1;

 last_problem_bool[1] = accum_straight_distance;

 }

 record('h');

 }

 while(PORTBbits.RB3 + PORTAbits.RA1 + PORTBbits.RB2 > 0){

 moving();

 }

 Stop();

}

void record(char corh){

157

 if (corh == 'c'){

 array_cracks_distance[crack_counter] = (int) (accum_straight_distance*28.3);//27.5

 crack_counter +=1;

 if (last_sensed == 2){

 LATDbits.LATD0 = 1;

 LATDbits.LATD1 = 0;

 __delay_ms(wety_deg);//180 deg

 }

 else if(last_sensed == 0){

 LATDbits.LATD0 = 1;

 LATDbits.LATD1 = 0;

 __delay_ms(ninty_deg);//90 deg

 }

 else{

 LATDbits.LATD0 = 1;

 LATDbits.LATD1 = 0;

 __delay_ms(50);//shake

 LATDbits.LATD0 = 0;

 LATDbits.LATD1 = 0;

 __delay_ms(50);//shake

 LATDbits.LATD0 = 0;//

 LATDbits.LATD1 = 1;

 __delay_ms(50);//shake

 }

 LATDbits.LATD0 = 0;

 LATDbits.LATD1 = 0;

158

 last_sensed = 1;

 }

 else if (corh == 'h'){

 array_holes_distance[hole_counter] = (int) (accum_straight_distance*28.3);

 hole_counter +=1;

 if (last_sensed == 1){

 LATDbits.LATD0 = 1;

 LATDbits.LATD1 = 0;

 __delay_ms(wety_deg);//180 deg

 }

 else if (last_sensed == 0){

 LATDbits.LATD0 = 0;

 LATDbits.LATD1 = 1;

 __delay_ms(ninty_deg);//90 deg

 }

 else{

 LATDbits.LATD0 = 1;

 LATDbits.LATD1 = 0;

 __delay_ms(50);//shake

 LATDbits.LATD0 = 0;

 LATDbits.LATD1 = 0;

 __delay_ms(50);//shake

 LATDbits.LATD0 = 0;

 LATDbits.LATD1 = 1;

159

 __delay_ms(50);//shake

 }

 LATDbits.LATD0 = 0;

 LATDbits.LATD1 = 0;

 last_sensed = 2;

 }

 else{

 printf("wrong");

 __delay_ms(10000);

 }

}

//original idea of moving sensor

/*void sensed_function_1(void){

 lcd_clear();

 printf("sensed");

 //update straight distance,then stop counting

 accum_straight_distance+=read_encoder_function(Perimeter_wheels);

 LATC = Stop;

 INT0IF = 0;

 INT0IE = 0;

 //TRISBbits.RB0 = 0;

 shape_distance=0;

160

 sensor_return_distance=0;

 turns_counter =0;

 rotary_counter = 0;

 //enable sensor encoder

 TRISBbits.RB2 = 1;

 INT2IF = 0;

 INT2IE = 1;

 INTEDG2 = 1;

 while (PORTAbits.RA0 == 0){

 LATEbits.LATE0 = 0;

 LATEbits.LATE1 = 1;//left

 }

 printf("moving left");

 __delay_ms(1000);

 LATEbits.LATE0 = 0;

 LATEbits.LATE1 = 0;//Stop

 sensor_return_distance+= read_encoder_function(Perimeter_sensor_mover);

 printf("moved %0.1f",sensor_return_distance);

 __delay_ms(1000);

 while(PORTAbits.RA0 !=0){// adjust sensor position to enter the tape area again

 LATEbits.LATE0 = 1;

 LATEbits.LATE1 = 0;//Right

 }

 printf("moving right null");

 __delay_ms(1000);

161

 turns_counter =0;

 rotary_counter = 0;

 while(PORTAbits.RA0 == 0){

 LATEbits.LATE0 = 1;

 LATEbits.LATE1 = 0;//Right

 }

 printf("moving right");

 __delay_ms(1000);

 LATEbits.LATE0 = 0;

 LATEbits.LATE1 = 0;//Stop

 shape_distance+= read_encoder_function(Perimeter_sensor_mover);

 printf("shape distance %0.1f",shape_distance);

 __delay_ms(1000);

 sensor_return_distance =shape_distance-sensor_return_distance;

 printf("return %0.1f cm",sensor_return_distance);

 __delay_ms(1000);

 turns_counter =0;

 rotary_counter = 0;

 while(move_encoder_function(Perimeter_sensor_mover,sensor_return_distance)){

 LATEbits.LATE0 = 0;

 LATEbits.LATE1 = 1; //left

 }

 printf("sensor returning");

162

 __delay_ms(1000);

 //INT2IF = 0;

 //INT2IE = 0;

 TRISBbits.RB2 = 0;

 LATEbits.LATE0 = 0;

 LATEbits.LATE1 = 0;//Stop

 if (distinguish_H_C_function() == 1){

 sensingH();

 TRISCbits.RC0=0;

 LATCbits.LATC0 = 1;

 if (hole_drop_bool_function() ==1){

 hole_dispense_function();

 cones_deployed+=1;

 }

 hole_counter +=1;

 //last_problem_bool = 1;

 array_holes_distance[hole_counter] = (int)(accum_straight_distance);

 while(PORTAbits.RA0 ==0){

 LATC = forw;}

 LATC = Stop;}

 else if (distinguish_H_C_function()==0){

 sensingC();

 TRISCbits.RC0=0;

 LATCbits.LATC0 = 0;

 if (crack_drop_bool_function() ==1){

163

 crack_dispense_function();

 cones_deployed+=1;}

 crack_counter+=1;

 //last_problem_bool =0;

 array_cracks_distance[crack_counter] =(int) (accum_straight_distance);

 while(PORTAbits.RA0 ==0){

 LATC = forw;} //moved over the solved problem. distance count

 LATC = Stop;

 }

 //end of the external interrupt handler

}

int distinguish_H_C_function(void){

 if ((shape_distance < 6) && (shape_distance >2)){

 return 1;}//hole

 else if ((shape_distance >13)&&(shape_distance <17)){

 return 0;}//crack

 else{

 return 3;}

}*/

16. PC Interface Program

import numpy as np

raw = np.loadtxt(open("/Users/Chen/Desktop/Microcontroller/pcinterface.txt","rt"), delimiter="

 ",dtype = "int32",converters={_:lambda s: int(s, 16) for _ in range(16)})

#print(raw)

print("-"*20,"start of report","-"*20,"\n")

164

nlength = (256*raw[0][0]+raw[0][1])

print("Permanent Memory used %.2f percent" % float(nlength/1024*100))

row = int(nlength/16)

remaining = row%16

column = 16

nlist = []

for i in range(row):

 for j in range(column):

 nlist.append(raw[i][j])

for i in range(remaining):

 nlist.append(raw[row][i])

#print(nlist)

temp = 0

for i in range(0,nlength):

 if (i-2)%56 == 0:

 print("\nAt %02d:"%nlist[i],end = "")

 elif (i-2)%56 == 1:

 print("%02d"%nlist[i],end = "")

 if nlist[i-1]<12:

 print("am")

 else:

 print("pm")

 elif (i-2)%56 == 2:

 print("Operated %d hours,"%nlist[i],end = "")

 elif (i-2)%56 == 3:

 print("%d minutes,"%nlist[i],end = "")

165

 elif (i-2)%56 == 4:

 print("%d seconds"%nlist[i])

 elif (i-2)%56 == 5:

 print("Deployed %d cones"%nlist[i])

 elif (i-2)%56 == 6:

 print("Detected %d holes"%nlist[i])

 print("Their distances from Start Line(cm):")

 elif (((i-2)%56 < 31)and(((i-2)%56) %2 ==1)):

 temp= nlist[i]*256

 elif (((i-2)%56 < 31)and(((i-2)%56) %2 ==0)):

 temp+=nlist[i]

 if temp!=0:

 print(" %d"%temp,end = "")

 elif (i-2)%56 == 31:

 print("\nDetected %d cracks"%nlist[i])

 print("Their distances from Start Line(cm):")

 elif (((i-2)%56 < 56)and(((i-2)%56) %2 ==0)):

 temp= nlist[i]*256

 elif (((i-2)%56 < 56)and(((i-2)%56) %2 ==1)):

 temp+=nlist[i]

 if temp!=0:

 print(" %d"%temp,end = "")

166

167

Appendix C: Additional Diagrams and Datasheets

1. U.S. Patent: Highway Cone Dispenser and Collector

2. U.S. Patent: Device for the Placement and If Desired the Collection of Traffic Cone

168

3. L298N Motor Driver Board Datasheet

169

4. LM338 Voltage Regulator Datasheet

170

171

172

173

174

175

5. LM7805 Voltage Regulator Datasheet

176

6. MG996R Servo Motor Datasheet

177

7. SM-S4306R Servo Motor Datasheet

178

8. TGP01S-A130 Angled DC Motor Datasheet

179

9. TCRT5000L IR Reflective Sensor Datasheet

180

10. EK1254x5C IR Reflective Sensor Datasheet

181

182

11. Material Performance Index

183

184

185

12. LCD datasheet

186

13. RTC datasheet

187

14. PIC18F4620 Datasheet

188

Appendix D: Sections of Proposal

5. SPECIFICATION

This section presents the proposed design in detail through the three different subsystems:

electromechanical, circuit and microcontroller. The overall design will be presented in the design

overview section, which includes the general description of the design choice and final model.

The design is likely to change during the construction process and testing process, but the overall

design should remain as what is described in this report.

5.1 Description Overview

The cone dispensing machine will be structured in a hybrid arrangement, with the cone

dispensing mechanism independent of the driving and sensing systems. The cone holder is

mounted at the back of the cart. The advantage of using this structure is to achieve system

separation as both systems do not necessarily interact with each other (the machine will stop

while dispensing the cone).

Figure 12: Illustration of Proposed Design

5.1.1 Size

Measurements:

Cone: 9cm*9cm*9cm (5cm diameter circle in the middle)

Distance Between Two Stacked Cones: 1𝑐𝑚 ± 1𝑚𝑚

PIC board: 17.5cm ∗ 18.7cm ∗ 1.3cm ± 1𝑚𝑚

189

According to the constraints that the dimension must be within 50cm*50cm*50cm, with also the

width of the lane is 25cm, the width of the design can be ranging from 25cm to 50cm if the

design wants to achieve the purpose of covering the lane. Height of the cone dispensing holder

must be higher than 30cm (shown below in calculation (1)) measuring from the ground in order

to hold 12 cones in place. The length of the design should cover the length of a PIC board as it is

designed to be mount on the top of the robot body, in which the length of the robot can be

ranging from 17.5cm to 50 cm. The width of the cone holder is considered ranging from 9.0 cm

to 9.5 cm, as during the testing of our prototype, the length within this range provides enough

space for the cone to freely drop while not move to other directions.

𝐻 = 12 ∗ 1 + 2 ∗ 9 = 30 𝑐𝑚 ± 1𝑚𝑚 (1)

With the hybrid arrangement, the overall machine is chosen within the dimension of 34.2cm*

35cm*30cm, which consists of a rectangular holder of 9.2cm*9.2cm*30cm and a rectangular

shaped body of 25cm*35cm*20cm. The length of the holder is chosen to be the average value

between 9cm and 9.5cm.

Both the dispensing holder and the body will be constructed using hollow aluminum sheet. The

cone dispensing holder will have four aluminum stands at each corner and surrounded with

aluminum stripes (approximately 3 stripes distributed in an equal distance).

5.1.2 Cone Dispensing System

The cone dispensing system uses the alternating doors mechanism described in conceptualization

section, which is constructed using a wooden board with a shaft connected to one servo motor.

5.1.3 Sensor Moving System

The sensor moving system utilizes the slider mechanism described in conceptualization section.

The sensor will achieve its movement by moving with the slider while the gear is rotating.

5.1.4 Driving System

The drive system chosen for our machine is the omni wheel drive with 4 omni wheels, which is

described in the conceptualization section.

5.1.5 Operation

The machine is positioned at the beginning line of the lane and will operate after the setup on the

user interface. It will then go along the straight lane until it detects a crack or hole. Once a hole

or crack is detected, the machine will stop and move its sensor to measure its length to determine

the placement of the cones. Then, the machine will move horizontally to place either one cone

for a hole or two cones for a crack.

190

5.2 Subsystem Decomposition

5.2.1 Electromechanical

5.2.1.1 Actuator Selection

5.2.1.1.1 Driving System Motors

The motor must work continuously excluding the operation of deployment of cones. The torque

must be high to carry weight.

To quantitively analyze the task performed by the motor, the following calculations are

performed:

5.2.1.1.1.1 Moment of Inertia

The wheel is made of plastic with density of 0.92g/m^3

𝐼 = 1
2⁄ 𝑚𝑟2 =

1

2
× 0.00092 × 𝑝𝑖 × 0.042 × 0.02 × 0.042 = 7.40 × 10−11𝑘𝑔𝑚2

5.2.1.1.1.2 Angular velocity

Consider the total operation time is 3 minutes and assume that the remaining 20 seconds is for

returning.

𝑣 = 4 ÷ 20 = 0.2 𝑚/𝑠

𝑃 = 8 × 𝑝𝑖 = 25
𝑐𝑚

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
= 0.25 𝑚/𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

0.2
𝑚

𝑠
÷ 0.25

𝑚

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
× 60 𝑠/ min = 48 rpm

𝜔 = 𝜔𝑟𝑝𝑚 × (
2𝑝𝑖

60
) = 5.02 𝑟𝑎𝑑/𝑠

5.2.1.1.1.3 Angular Acceleration

Assume the machine needs 2s to accelerate

𝛼 =
∆𝜔

∆𝑡
=

5.02

2
= 2.5 𝑟𝑎𝑑/𝑠

5.2.1.1.1.4 Torque

𝜏 = 𝐼𝛼 = 7.40 × 10−11 × 2.5 = 1.85 × 10−10𝑁/𝑚

5.2.1.1.1.5 Power

191

𝑃 = 𝜏 × 𝜔𝑟𝑎𝑑 = 9.29 × 10−10𝑤

Apply a factor of safety of 2 to account to sources of errors:

𝑃𝑠𝑎𝑓𝑒 = 1.857 × 10−9𝑤

Based on the calculations of the torque and power needed, the section of DC motor TGP01S-

A13014150-120 is made according to datasheet in Appendix C-3.

5.2.1.1.2 Sensor Moving Mechanism Motor

Assumption is made that the motor rotates approximately 30 revolutions per minute.

Regard the gear as an aluminum cylinder with r=1cm

The density of aluminum is 2.7 𝑔/𝑚3

5.2.1.1.2.1 Moment of Inertia

𝐼 =
1

2
𝑚𝑟2 =

1

2
× 0.0027 × 𝑝𝑖 × 0.012 × 0.002 × 0.012 = 8.48 × 10−14𝑘𝑔𝑚2

5.2.1.1.2.2 Angular Acceleration

𝜔 = 𝜔𝑟𝑝𝑚 × (
2𝑝𝑖

60
) = 3.14 𝑟𝑎𝑑/𝑠

Assume the acceleration time is approximately 3 s

𝛼 =
∆𝜔

∆𝑡
=

3.14

3
= 1 𝑟𝑎𝑑/𝑚2

5.2.1.1.2.3 Torque

𝜏 = 𝐼𝛼 = 8.48 × 10−14 × 1 = 8.48 × 10−14𝑁𝑚

5.2.1.1.2.4 Power

𝑃 = 𝜏 × 𝜔𝑟𝑎𝑑 = 2.66 × 10−13𝑤

Based on the calculated results and data sheet in Appendix C-3, the DC motor TGP01S-

A13014150-120 is selected for the sensor moving mechanism.

5.2.1.1.3 Cone Dispensing System Motor

The board is of dimension 9.2 cm* 6cm*0.8cm, the wood has a density of 650 𝑘𝑔/𝑚3

5.2.1.1.3.1 Moment of Inertia

192

𝐼 =
1

12
𝑚(𝐷2 + 𝐻2) =

1

12
× 650 × (0.092 × 0.06 × 0.008) × (0.00922 + 0.062)

= 8.814 × 10−6𝑘𝑔𝑚2

5.2.1.1.3.2 Torque

𝜏 = 𝐼𝛼 = 8.814 × 10−6 × 1 = 8.814 × 10−6𝑁𝑚

5.2.1.1.3.3 Power

𝑃 = 𝜏 × 𝜔𝑟𝑎𝑑 = 2.77 × 10−5𝑤

According to the calculated torque and power, a choice of MG996R high torque servo motor is

selected. (Details of the motor in Appendix C-4)

5.2.1.2 Drive System

The proposed driving system used in our design is holonomic drive with four omni wheels

constructed 45 degree clockwise with respect to the general orientation with wheels tangential at

the two sides. The following figures show how the omni wheels are controlled through

microcontroller signals to achieve all directional movement.

Figure 13: Directional Control of Mecanum Wheels Mounted Parallel to the Main Body

193

Figure 14: Omni Wheels Mounted at 45 Degree Angles to the Main Body Follows the Same

Directional Control Protocols as the Mecanum Wheels.

5.2.1.3 Materials

According to the materials index (See Appendix C-5), several materials are selected for different

mechanisms through careful consideration:

• Structure: aluminum (robust, light)

• Base: aluminum (robust, light)

• Cone Dispensing Mechanism: wood (easy for construction)

• Wire: copper (conductor)

5.2.2 Circuit Design

5.2.2.1 Driving Motors

194

Figure 15: H – Bridge Motor Driver Circuit

The driving DC motors will be controlled using a simple h-bridge circuit as shown in Figure 15.

This circuit will provide the necessary directional control of the driving motors based on signals

given by the microcontroller in the form of PWM. When a signal is given to transistors Q1 and

Q4, the motor will be powered to rotate in the clockwise direction. Similarly, when a signal is

given to transistors Q2 and Q3, the motor will rotate in the counterclockwise direction.

Furthermore, when none of the transistors are receiving a signal, the motor will be turned off.

Since the rotation of diagonal driving wheels will be the same, this means that the PWM signal

for the two diagonal wheels can be shared. As a result, the PWM signals indicated in Figure 15

will also be connected to another motor with a similar h-bridge circuit, which reduces the amount

of microcontroller pins needed by half. This circuit can also be used for speed control via the

duty cycle. A higher duty cycle would result in a higher speed because the motors are exposed to

the current flow for a longer period of time.

5.2.2.2 Sensor Rack Motor

Since the motor used to provide translational movement for the IR sensors will also be a DC

motor. The same h-bridge circuit can be applied to the DC motor controlling the movement of

the sensor rack.

5.2.2.3 Cone Dispensing Mechanism Motor

195

Figure 16: Connection Diagram of the MG996R Servo Motor

As shown in Figure 16, the connection to the servo motor is does not require an external driver

board. The PWM signal from the PIC board can be directly sent to the servo motor to control its

speed and direction, while the VCC and Ground pins are used to power the motor through the

power supply.

5.2.2.4 IR Sensors

Figure 17: Circuit Diagram for QRE1113 IR Sensors

The sensors for crack and hole detection as well as trajectory maintenance will be IR sensors.

This type of sensor is the best choice for our project because we do not need detect physical

objects, which eliminates the choice of most proximity sensors. The only remaining choice is

using light sensors, and out of all of the light sensors in a reasonable price range within the

budgeting limit, IR sensors have the best price to performance ratio. The IR sensors that will be

used compose of IR LEDs and IR transistor pairs as shown in Figure 17. The IR LED transmits a

beam of IR light into one direction, and the IR transistor will have a different discharge response

based on the intensity of the IR light bounced backed after contacting a surface. IR light is also

less affected by ambient light conditions, which makes calibrations less troublesome. This setup

is perfect for crack and hole detection between black surfaces like the tape that will be used to

196

represent cracks and holes reflect a minimum amount of IR light. As a result, the IR sensor will

have a very sensitive response in differentiating between the tape and the floor.

5.2.2.5 Rotary Encoders

Another type of sensors that will be used are rotary encoders. Rotary encoders are sensors that

can be added onto the shaft of DC motors to record distance travelled. However, these encoders

can only output the relative position of the wheel at any given time. As a result, to extract the

distance information from these encoders, the arclength between two rotational positions of the

encoder must be obtained through the datasheet. Using this arclength, it is then possible to

calculate the distance travelled through the PIC board by multiplying the arclength by the

number of positions travelled. A rotary encoder will be needed on one of the driving DC motors

to record the distance travelled both along the path as well as horizontally when dispensing the

cones. Another rotary encoder will be needed on the DC motor controlling the sensor moving

mechanism to ensure accurate IR sensor positioning.

5.2.2.6 Power Supply

Figure 18: The Turnigy 2200mAh 2S 25C Lipo Battery Pack

197

Since an on-board power supply is required, the power supply that will be used is the Turnigy

2200mAh 2S 25C Lipo Pack. It provides a good capacity of 2200mAh, but the voltage that it

comes in is at 7.7V. This means that voltage regulators are required for each circuit board to

protect the components as most of them take less than 5V in potential.

5.2.3 Microcontroller

5.2.3.1 Microcontroller Selection

The Peripheral Interface Controller (PIC) microcontroller from Microchip Technology Inc. is

used in the design as recommended by the instructor (as well as the client). The advantages of

PIC microcontrollers are their fast operation, low power, low cost and ease of programming [12].

Figure 18 shows a picture of the PIC model we use.

Figure 19: Picture of PIC Microcontroller

5.3.3.2 Pin Assignments

Table 5: Microcontroller Pin Assignments

Pin name In/Out Analog(A)

or

Digital(D)

Description

RD0:RD7 Out D LCD Display

198

RB4:RB7 In D Keypad Input

RB1 In D Keypad Interrupt

RA0 Out D CW signal for first set of diagonal driving DC motors

RA1 Out D CCW signal for first set of diagonal driving DC motors

RA5 Out D CW signal for second set of diagonal driving DC motors

RE0 Out D CCW signal for second set of diagonal driving DC motors

RE1 In D Signal from rotary encoder on one of the driving DC motors

RE2 Out D Directional signal for cone dispensing mechanism servo

motor

RC0 Out D CW signal for sensor moving mechanism DC motor

RC1 Out D CCW signal for sensor moving mechanism DC motor

RC2 In D Signal from rotary encoder on the sensor moving

mechanism DC motor

RC6 In D Signal from crack/hole detection IR sensor

RC5 In D Signal from first lane following IR sensor

RC7 In D Signal from second lane following IR sensor

RC3,

RC4

In D RTC

*CW denotes clockwise, CCW denotes counterclockwise

5.2.3.3 Microcontroller Flowchart and Pseudo Codes

199

Figure 20: Microcontroller Flowchart

Corresponding to the processes A to I in the main flowchart, pseudo codes for each function are

proposed here.

Initial Setup: Configure input and output pins. Enable interrupts. Assign data address.

A: Set outputs to moving parts to zero. Instruct LCD to the standby menu display.

B: if-statements to change LCD displays based on Keypad pins inputs.

C: reset the data in corresponding address for: elapsed time, distances travelled, number of cones

dropped, number of holes/cracks detected etc. Start time and distance counters.

D: Set output to wheels and sensors to high.

E: Clear the interrupt. Set output to wheels to zero. Set the output to communication signal to

high. A while-loop to instruct the sensor move left and right until both edges of the crack/hole

are located. Identify the shape based on the distance travelled by the sensor. Retrieve from

memory the shape and location of the last crack/hole. Accumulate the relevant counters.

F: If-statements to compute a 0/1/2 output for cones dispensing based on previous data.

Accumulate the relevant counters.

G: Compute the required movement of the machine to drop the cones. Instruct the machine to

dispense cones. Accumulate the relevant counters.

200

H: (in the initial setup) set internal interrupts for the three listed conditions.

I: Clear the interrupt. Move the necessary data to permanent memory. Compute the distance

needed to travel to return to the Start line. Instruct to machine to move correspondingly.

5.2.3.4 User Interface

The keypad and LCD module on PIC board serve as the main user interface. If an emergence

occurs, the STOP switch on the shell of the machine can cut off the power supply and stop all

moving parts. Figure xx shows the appearance of the keypad and LCD. LCD shows 4 lines and

64 characters in total.

The keypad can be used when the machine is at rest and in standby mode behind the start line. At

that time, LCD shows “Completed. Press A: Operation Report / D:Restart” in the first three

lines while the fourth line rotates to display the real-time date and time (e.g. “Date 28/Jan/2019

Time 13:57:34” . If A is pressed, LCD will display the new instruction and the operation report.

The operation report contains the numbers and locations of holes and cracks detected

respectively, the number of cones deployed, and overall operation time. If exit is commanded,

LCD will show the initial standby page.

Example:

Figure 21: Page 1, 2, and 3 for Operation Report.

201

6. Project Management

6.1 Task Assignment

6.1.1 Gantt Chart

202

6.1.2 PERT

Figure 22: PERT Diagram

Table 6: PERT Activity Correspondence Table

Activity Duration Proceed by ES LS TF Durations Variance Expected Time(te)

Brainstorming 7 0 0 0 5-7-8 0.25 6.83

Project Planning 7 A 7 7 0 5-7-9 0.11 7.00

Hardware shopping 2 B 14 14 0 1-2-3 0.11 2.00

Prototyping and testing 5 C 16 16 0 2-4-5 0.25 3.83

Constructing Driving System 5 D 21 21 0 4-5-8 0.44 5.33

Construcing Cone Dispensing Mechanism 6 D 21 21 0 5-6-8 0.25 6.17

Constructing Sensor Mover Mechnism 4 D 21 21 0 3-4-6 0.25 4.17

Integrating machine 6 E,F,G 25 27 2 5-6-10 0.69 6.50

Motor Driver Circuit Experimentation and Fabrication 11 D 21 21 0 9-11-12 0.25 10.83

Sensor Circuit Experimentation and Fabrication 7 D 21 21 0 6-7-8 0.11 7.00

Power supply selection 4 D 21 21 0 3-4-6 0.25 4.16

Debugging 6 I,J,K 25 32 7 5-6-9 0.44 6.33

Running sample code 3 B 14 14 0 1-2-3 0.11 2.00

pin assignment 2 M 17 17 0 1-2-3 0.11 2.00

user interface design 3 M 17 17 0 2-3-5 0.25 3.17

programming code 14 O,N 19 20 1 10-14-15 0.44 13.50

System Integration 10 L,H 31 38 7 8-10-12 0.69 10.00

System Debugging 10 Q,P 33 49 16 8-10-12 0.69 10.00

Project Demonstration 1 R 44 59 15 0-1-2 0.11 1.00

203

Table 7: Critical Paths Based on PERT

The longest path taken is A-B-C-D-I-L-Q-R-S which has a duration of 60 days in total.

Expected Time to Complete the Project:

𝑇𝑒 = ∑ 𝑡𝑒 = 53.49 𝐷𝑎𝑦𝑠

Variance of the Project Completion Duration:

𝜎𝑒
2 = ∑ 𝜎2 = 2.9

6.2 Budgeting

Table 8: Budget of Required Materials Sectioned by Subsystem

Total Project Cost of the Proposed Design: $228 CAD

PATH LENGTH/DAYS

A-B-C-D-E-H-Q-R-S 54

A-B-C-D-F-H-Q-R-S 53

A-B-C-D-G-H-Q-R-S 52

A-B-C-D-I-L-Q-R-S 60

A-B-C-D-J-L-Q-R-S 55

A-B-C-D-K-L-Q-R-S 52

A-B-M-N-P-R-S 43

A-B-M-O-P-R-S 44

Subsystem Item Qty. Cost Source

Electromechanical 8*24*0.25 Aluminum sheet 1 13.81$ https://www.homedepot.ca/en/home/p.8-inch-x-24-inch-x-025-inch-aluminum-sheet-metal.1000126786.html

Shenzhen DC Motor Straight 3 12.00$ Project Kit

Servo Motor 1 12.00$ Project Kit

Paulin 1*4 aluminum tube 1 23.78$ https://www.homedepot.ca/en/home/p.papc-1x4-square-alum-tubing.1000170181.html

¼*2*4 Ply wood 1 11.76$ https://www.homedepot.ca/en/home/p.14-inch-x-2-feet-x-4-feet-birch-plywood-handy-panel.1000114111.html

Plastic Gear 1 5.99$ https://hobbyking.com/en_us/kimbrough-48pitch-73t-spur-gear.html

Gear Rack 1 18.00$ https://www.ebay.com/itm/BOSTON-GEAR-G-579-GEAR-RACK-FOR-CLOCKS-ETC-CNC-LINEAR-MOTION-12-LONG-BRASS-NOS-/232419124289

Hinges 4 0.36$ https://www.ebay.com/p/20x-Miniature-Hinges-Nails-Screws-Fits-Dollhouse-1-12-Scale-Cabinet-Furniture/2114401531?iid=362504358235

Omni wheels 4 31.60$ https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome

Circuits Turnigy 2200mAh 2S 25C Lipo Battery Pack 1 8.99$ https://hobbyking.com/en_us/turnigy-2200mah-2s-25c-lipo-pack-w-xt60.html

Wires 1 5.63$ https://www.robotshop.com/ca/en/el-wire-blue-1m.html

Solder Board 4 0.40$ https://item.taobao.com/item.htm?id=522043872157&price=0.5&original_price=0.5&sourceType=item&sourceType=item&suid=d82a5dd5-d63d-4047-9c31-388803dca5b1&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548858619995.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lemJwdmJIZENBYm7vv6U=&cpp=1&shareurl=true&spm=a313p.22.319.1008922353858&short_name=h.3GyLOd2&sm=de3fc6&app=chrome

QRE1113 IR Sensor 3 9.39$ https://www.robotshop.com/ca/en/sfe-digital-ir-line-sensor-qre1113.html

L7805 5V 1.5A Voltage Regulator 4 4.36$ https://www.robotshop.com/ca/en/l78055v-15a-voltage-regulator.html

H -Bridge Driver Board 1 3.00$ Project Kit

Microcontroller PIC DevBugger Development Board with AC/DC Adapter and Cable Bus 1 55.00$ Project Kit

Character LCD+Keypad (with the PIC encoder chip) 1 8.00$ Project Kit

Real-time Clock (RTC) Chip and Coin Battery 1 4.00$ Project Kit

204

Table 9: Sources for Budgeting

Source

https://www.homedepot.ca/en/home/p.8-inch-x-24-inch-x-025-inch-aluminum-sheet-

metal.1000126786.html

Project Kit

Project Kit

https://www.homedepot.ca/en/home/p.papc-1x4-square-alum-tubing.1000170181.html

https://www.homedepot.ca/en/home/p.14-inch-x-2-feet-x-4-feet-birch-plywood-handy-

panel.1000114111.html

https://hobbyking.com/en_us/kimbrough-48pitch-73t-spur-gear.html

https://www.ebay.com/itm/BOSTON-GEAR-G-579-GEAR-RACK-FOR-CLOCKS-ETC-

CNC-LINEAR-MOTION-12-LONG-BRASS-NOS-/232419124289

https://www.ebay.com/p/20x-Miniature-Hinges-Nails-Screws-Fits-Dollhouse-1-12-Scale-

Cabinet-Furniture/2114401531?iid=362504358235

https://item.taobao.com/item.htm?id=571660599800&price=40-

50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-

85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Cop

y.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhP

a0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9u

py&sm=7a1a5d&app=chrome&price=40-

50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-

85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Cop

y.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhP

a0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9u

py&sm=7a1a5d&app=chrome

https://hobbyking.com/en_us/turnigy-2200mah-2s-25c-lipo-pack-w-xt60.html

https://www.robotshop.com/ca/en/el-wire-blue-1m.html

https://item.taobao.com/item.htm?id=522043872157&price=0.5&original_price=0.5&sourceT

ype=item&sourceType=item&suid=d82a5dd5-d63d-4047-9c31-

388803dca5b1&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548858619995.Cop

y.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lemJwdmJIZENB

Ym7vv6U=&cpp=1&shareurl=true&spm=a313p.22.319.1008922353858&short_name=h.3Gy

LOd2&sm=de3fc6&app=chrome

https://www.robotshop.com/ca/en/sfe-digital-ir-line-sensor-qre1113.html

https://www.robotshop.com/ca/en/l78055v-15a-voltage-regulator.html

Project Kit

https://www.homedepot.ca/en/home/p.8-inch-x-24-inch-x-025-inch-aluminum-sheet-metal.1000126786.html
https://www.homedepot.ca/en/home/p.8-inch-x-24-inch-x-025-inch-aluminum-sheet-metal.1000126786.html
https://www.homedepot.ca/en/home/p.papc-1x4-square-alum-tubing.1000170181.html
https://www.homedepot.ca/en/home/p.14-inch-x-2-feet-x-4-feet-birch-plywood-handy-panel.1000114111.html
https://www.homedepot.ca/en/home/p.14-inch-x-2-feet-x-4-feet-birch-plywood-handy-panel.1000114111.html
https://hobbyking.com/en_us/kimbrough-48pitch-73t-spur-gear.html
https://www.ebay.com/itm/BOSTON-GEAR-G-579-GEAR-RACK-FOR-CLOCKS-ETC-CNC-LINEAR-MOTION-12-LONG-BRASS-NOS-/232419124289
https://www.ebay.com/itm/BOSTON-GEAR-G-579-GEAR-RACK-FOR-CLOCKS-ETC-CNC-LINEAR-MOTION-12-LONG-BRASS-NOS-/232419124289
https://www.ebay.com/p/20x-Miniature-Hinges-Nails-Screws-Fits-Dollhouse-1-12-Scale-Cabinet-Furniture/2114401531?iid=362504358235
https://www.ebay.com/p/20x-Miniature-Hinges-Nails-Screws-Fits-Dollhouse-1-12-Scale-Cabinet-Furniture/2114401531?iid=362504358235
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://item.taobao.com/item.htm?id=571660599800&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome&price=40-50&sourceType=item&sourceType=item&suid=a3879175-8f36-4017-b607-85528cb7aa6d&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548857663376.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lUTAzTGJIZEhPa0zvv6U=&cpp=1&shareurl=true&spm=a313p.22.ol.1008561703359&short_name=h.3GL9upy&sm=7a1a5d&app=chrome
https://hobbyking.com/en_us/turnigy-2200mah-2s-25c-lipo-pack-w-xt60.html
https://www.robotshop.com/ca/en/el-wire-blue-1m.html
https://item.taobao.com/item.htm?id=522043872157&price=0.5&original_price=0.5&sourceType=item&sourceType=item&suid=d82a5dd5-d63d-4047-9c31-388803dca5b1&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548858619995.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lemJwdmJIZENBYm7vv6U=&cpp=1&shareurl=true&spm=a313p.22.319.1008922353858&short_name=h.3GyLOd2&sm=de3fc6&app=chrome
https://item.taobao.com/item.htm?id=522043872157&price=0.5&original_price=0.5&sourceType=item&sourceType=item&suid=d82a5dd5-d63d-4047-9c31-388803dca5b1&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548858619995.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lemJwdmJIZENBYm7vv6U=&cpp=1&shareurl=true&spm=a313p.22.319.1008922353858&short_name=h.3GyLOd2&sm=de3fc6&app=chrome
https://item.taobao.com/item.htm?id=522043872157&price=0.5&original_price=0.5&sourceType=item&sourceType=item&suid=d82a5dd5-d63d-4047-9c31-388803dca5b1&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548858619995.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lemJwdmJIZENBYm7vv6U=&cpp=1&shareurl=true&spm=a313p.22.319.1008922353858&short_name=h.3GyLOd2&sm=de3fc6&app=chrome
https://item.taobao.com/item.htm?id=522043872157&price=0.5&original_price=0.5&sourceType=item&sourceType=item&suid=d82a5dd5-d63d-4047-9c31-388803dca5b1&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548858619995.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lemJwdmJIZENBYm7vv6U=&cpp=1&shareurl=true&spm=a313p.22.319.1008922353858&short_name=h.3GyLOd2&sm=de3fc6&app=chrome
https://item.taobao.com/item.htm?id=522043872157&price=0.5&original_price=0.5&sourceType=item&sourceType=item&suid=d82a5dd5-d63d-4047-9c31-388803dca5b1&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548858619995.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lemJwdmJIZENBYm7vv6U=&cpp=1&shareurl=true&spm=a313p.22.319.1008922353858&short_name=h.3GyLOd2&sm=de3fc6&app=chrome
https://item.taobao.com/item.htm?id=522043872157&price=0.5&original_price=0.5&sourceType=item&sourceType=item&suid=d82a5dd5-d63d-4047-9c31-388803dca5b1&ut_sk=1.We4NzyOduAQDADzamSQEiLf2_21646297_1548858619995.Copy.1&un=463d822e970cc012a8fb54add16a2d54&share_crt_v=1&sp_tk=77+lemJwdmJIZENBYm7vv6U=&cpp=1&shareurl=true&spm=a313p.22.319.1008922353858&short_name=h.3GyLOd2&sm=de3fc6&app=chrome
https://www.robotshop.com/ca/en/sfe-digital-ir-line-sensor-qre1113.html
https://www.robotshop.com/ca/en/l78055v-15a-voltage-regulator.html

205

Project Kit

Project Kit

Project Kit

206

